沙雅县屠宰加工厂建设项目环境影响报告书 (报审版)

THE REAL PROPERTY OF THE PARTY OF THE PARTY

THE RESIDENCE OF THE PARTY OF T

建设单位:沙雅县金胡杨畜牧养殖有限责任公司 环评单位:河北奇正环境科技有限公司 编制时间:二〇二二年六月

				1
A THE THE	1概述	录		1
	1.1 任务由来及背景 1.2 项目特点		1	
	1.3 环境影响评价工作过程	培影响	2	1
	1.6 评价结论2 总论	- 3CAQ 113	10	
	2.1 编制依据2.2 评价目的与原则2.3 评价内容及评价重点		5	1
	2.4 环境影响因素识别及评价因子 2.5 评价标准 2.6 评价等级及评价范围		6	
	2.7 环境保护目标与污染控制3 工程概况及工程分析		22	1
A This was a second of the sec	3.1 工程基本情况 3.2 产品方案		24	
	3.3 原辅材料及能源消耗3.4 工程生产设备3.5 工艺流程及排污节点		27	1
X 7/15	3.6 物料平衡 3.7 公用工程		38	1
	3.8 污染源分析及污染防治措施 3.9 清洁生产分析 3.10 污染物排放量汇总		57	
	4环境现状调查与评价4.1 自然环境现状调查		61	1
	4.2 沙雅县污水处理厂概况	I Aller	64	
				1

					1
	4.3 环境敏感区调查			65	
12/15	4.4 环境质量现状监测与评价	X (1)	7.775	67	
	5 环境影响预测与评价	100	1	81	1
	5.1 施工期环境影响分析			a81	
4/115	5.2 运营期大气环境影响评价		4/05	85	
	5.3 水环境影响分析	, -	<u> </u>	99	
	5.4 声环境影响预测与评价	1	.+	124	1
	5.6 生态环境影响分析		1	130	
4/112	5.7 土壤环境影响预测与分析			130	
	5.8 环境风险影响评价	X	XXX	131	
	6环境保护措施及其可行性论证	1/1/2		150	1
	6.1 废气污染防治措施可行性分析.			2.150	
4/11=	6.2 废水污染防治措施可行性分析.			152	
A STATE OF THE STA	6.3 噪声污染防治措施	<u> </u>	<u> </u>	159	
	6.4 固体废物治理措施	.142.7	.1,	159	1
	7环境影响经济损益分析			.161	
4/10-	7.1 经济效益分析	4/112	2//2	161	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.1 环保投资估算	4-1		.161	
	7.2 社会效益分析 7.3 环境损益分析	1		162	1
	7.4 小结		4/6	,700	
Alm-	8环境管理与监测计划			165	
	8.1 环境管理		XX YS	.165	
	8.2 环境监测计划	1		167	1
	8.3 排污口规范化设置			. 168	
Alm-	8.4 排污许可证管理要求		4/0-	169	
A CONTRACTOR OF THE PARTY OF TH	8.5 污染物排放清单			169	
	8.6 环境保护三同时验收	.1	+	. 175	1
A The State of the	9 结论	II THE THE PARTY OF THE PARTY O		178	
					1

A Property of the Property of						1
	9.1 建设	项目情况			178	
**	X.P	质量现状	XXV	ZZY	179	1
		物排放情况			179	
		环境影响		, **<	179	
Zin-	11	保护措施	2/0-	//	180	
X 13	XL	影响经济损益分析		X	182	
	1///	管理与监测计划			182	1
	9.8 坝目	可行性结论			183	
	附图:		The State of the S			
XL, 5	附图1:	项目地理位置图	72/15	X	X_1/35	
	附图 2:	项目周边关系图				1
V Jan	附图 3:	项目厂区平面布置图	, to	.10)	, 10.	
(1) Klos	附图 4:	项目与生态红线位置关	系图			(0)
-14/15	附图 5:	阿克苏地区环境管控单	元分布图	-,40.5	-,40:5	
4	附图 6:	项目监测布点图		7	77	
						1
	附件:					
ZL135	附件1:	项目登记备案证	7/1/37	7/1/5	7/1/25	
	附件2:	建设用地预审意见				1
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	附件 4:	环境质量现状检测报告	NY for	N/	N Y	
	附件 5:	土地租赁协议				
4/115	附件 6:	委托书	3/105	2/11/2	4/11=	
A. W.	附件7:	建设项目环评审批基础	信息表		A TO	
						1
	<u> </u>					

,與重意见 ,境质量现状检测报告 ,5、生地租赁协议 附件6。委托·日 、新件7、建设项目环评审批基础信息表 THE STATE OF THE PARTY OF THE P

THE REPORT OF THE PARTY OF THE A STATE OF THE PARTY OF THE PAR

1 概述

1.1 任务由来及背景

新疆地广人稀,拥有大面积牧场,占全国牧场面积的 1/6,是全国畜牧业生产基地和五大牧区之一,拥有发展畜牧业得天独厚的条件,同时受自然条件、生产方式等因素影响,新疆的畜牧业生产具有以草食家畜为主的特点,丰富的草地资源为发展以牛羊为主体的草地生态畜牧业提供了重组的物质保障。肉羊产业是新疆现代畜牧业发展的主导产业,是新疆最具优势的传统产业之一,加快肉羊产业发展是优化农业产业结果,保障市场供给的现实需求。

近年来,随着自治区农业产业结构的调整和优化,畜牧业中食草家畜肉羊的生产得到了重视,肉羊养殖得到了政府和群众的重视和优先发展。为了提供肉羊综合生产能力,新疆提出了"新增 1000 万只出栏肉羊综合生产能力建设规划",目前,新疆正在建设一批肉羊标准化规模养殖场、养殖小区,与之配套的屠宰产业也得到了进一步的发展。

目前,屠宰加工业是肉羊产业链的突出短板,现有屠宰加工企业存在资源相对集中、地区分布不均匀等问题,新疆全区肉羊屠宰加工能力不足,设备落后,屠宰加工不复返。现有很多加工企业及定点屠宰场采用地滚式屠宰方法,加工工业落后,基本停留在"小作坊式"的生产规模,产品科技含量不高,缺乏竞争优势,可持续发展力不足,这与蓬勃发展的肉羊养殖形成了强烈的反差。

为进一步提升屠宰加工的规范化、科学化,提高肉羊屠宰加工的自动化及规模化沙雅县金胡杨畜牧养殖有限责任公司拟投资 7200 万元在沙雅县民富村建设沙雅县屠宰加工厂建设项目,项目建成后年屠宰肉羊 30 万只。

1.2 项目特点

- (1)项目采用先进的机械化工艺设备,整个生产工艺流程除吊挂、燎毛、 掏膛、副产品加工等人工操作外,其余均采用自动化流程,生产设备自动化程度 高。生产线在各生产环节可进行自动检疫和肉品质量分析,使肉品达到国际卫生 标准。
- (2)项目废水经厂区污水处理站处理后满足《肉类加工工业水污染物排放标准》(GB13457-92)表3三级标准、《屠宰及肉类加工工业水污染物排放标准》(二次征求意见稿)表3特别排放限值间接排放限值要求后,最终排入沙雅县污水处理厂进行深度处理。

(4)项目实现了固废综合利用,零排放。羊粪外售用于生产肥料;碎骨肉渣外售用作饲料;不合格病羊及产品经化制处理后外售用作肥料原料;污水处理站污泥外售堆肥用作农肥。

1.3 环境影响评价工作过程

根据《中华人民共和国环境保护法》、《建设项目环境保护管理条例》及《建设项目环境影响评价分类管理目录》有关规定,为做好该项目的环境保护工作,建设单位委托河北奇正环境科技有限公司承担本项目的环境影响评价工作。

接受委托后,评价单位组织有关人员对项目选址进行踏勘调研,收集有关技术资料,分析判定建设项目规模、性质和工艺路线等与国家和地方有关环境保护法律法规、标准、政策、规范、相关规划、规划环境影响评价结论的符合性在此基础上按照导则的要求,编制完成《沙雅县屠宰加工厂建设项目环境影响报告书》(报审版)。

1.4 分析判定相关情况

- (1)项目对照《产业结构调整指导目录(2019年本)》,属于其中的鼓励类:"一、农林业,32、农林牧渔产品储运、保鲜、加工与综合利用",不属于其中的限制类:"十二、轻工,32、年屠宰生猪 15 万头及以下、肉牛 1 万头及以下、肉牛 1 万头及以下、肉羊 15 万只及以下、活禽 1000 万只及以下的屠宰建设项目(少数民族地区除外)",且不属于其中的淘汰类:"31、猪、牛、羊、禽手工屠宰工艺"。2021年 11 月 8 日,沙雅县发展和改革委员会为本项目出具《阿克苏地区沙雅县企业投资项目登记备案证》(备案证编号:2111-652924-20-01-704128),项目建设符合国家产业政策。
- (2)项目位于沙雅县民富村,远离居民点等环境敏感目标,布置在沙漠地区,占地类型主要为沙地,不在生态保护红线范围内。项目在采取评价提出的废气、废水、噪声、固体废物污染防治措施及生态保护措施后,项目实施不会改变区域的环境功能区和生态功能区要求,对周边环境的影响在可接受范围内。
 - (3)与《新疆生态环境保护"十四五"规划》符合性分析 本项目情况与《新疆生态环境保护"十四五"规划》相关要求对照见表 1.4-1。

表 1.4-1 与《新疆生态环境保护"十四五"规划》符合性分析

文件名称	规划相关要求		本项目情况	符合性
《新疆生	加强恶臭、有毒有害大气污染物	本项目运营期	会产生恶臭气体,对于待宰	/
态环境保	防控。加强工业臭气异味治理,	圈采取粪便每	天清理, 定期消毒除臭, 车	符合

				1	
7/105	味企业建设,加强垃圾 k处理各环节和畜禽养	7///3		7-	
殖场臭气	异味控制,提升恶臭治 理水平	盖密闭,污泥及	青运的措施,污水处理 及时清运,周围进行约 行负压收集后进行除 理后排放	录化并	
化利用。 量、资源	底物源头减量和资源 加强固体废物源头减 化利用和无害化处置, 工限度减少填埋量	后外售作肥料力 定期外售作饲料 害化处理后外負	到综合利用(羊粪集。 加工;碎骨肉渣集中。 料加工;不合格羊及产 害做肥料加工;污泥约 小售堆肥用作农肥)	文集后 产品无 符合	
X.7P	本项目符合《新疆 政策符合性分析 本项目与相关大气 》	生态环境保护	3"十四五"规划》	5	
环保政策	政策要求	>	本项目实际	是否	

本项目与相关大气污染防治政策的符合性

, X	(4) 与相	关政策符合性分析	X	A. A.		X.
	表 1.4-2	本项目与相关大气污	染防治政策的	符合性	1	5/
	环保政策	政策要求		本项目实际	是否 符合	
401.5	7///5	1、加强工业企业大气污	7.0/.5	7///5	设置	4/11.5
X		理。在供热供气管网不能	1		区生	X. T
3/		区,改用电、新能源或洁			10	5/
/ A.	2	广应用高效节能环保型锅		L期采取设置围挡、	施工符合	% .
4	_ ^ ~	2、加强施工扬尘监管,积		El.	洒水	4(0)
	1	色施工,建设工程施工现	W. \\	1/2	`) `	
7,7(135	71 1	闭设置围挡墙,严禁敞开	Z1 Y	71 17	1车辆	7.105
(A)	方案的通知》	施工现场道路应进行地面	./ /	/\/	./	75
	《国务院关于印		项目属	于农副食品加工行业	业。项)
JA.	发水污染防治行	专项整治重点行业。2016	年底前, 目设置	置"预处理+缺氧+	好氧	1/1/2
		制定农副食品加工、焦化			符合	
4/10=	《新疆维吾尔自	有色金属、制革、造纸等	重点行业座,设	计处理规模 1000m	n³/d;	Zin-
X	治区水污染防治	专项治理方案,实施清洁。	化改造。 达标后	排入沙雅县循污水	(处理	X
	工作方案》					
Y	V.	第十七条:从事动物饲养、	屠宰、经本项目	在屠宰过程中均做	好了	,
	1/2	营、隔离、运输以及动物	产品生产、免疫、	消毒等动物疫病预	i防工	4/16
	《中华人民共和	经营、加工、贮藏等活动	的单位和作。项	自选址周围无环境	勧感	
4/15	国动物防疫法》	个人,应当依照本法和国	务院兽医点,无	水源保护区。生产厂	房为 符合	-1/05
4	国初70月1又1公//	主管部门的规定, 做好免	疫、消毒封闭厂	房,配套建设有污力	〈处理	*
		等动物疫病预防工作。		各类固体废物均达		1
.///_		第十九条:动物饲养场(养	殖小区)和100%女	上置。综上,项目的]建设	./n_
1/200				Klas	14/00	
			3	///		Na No
7//5	77/15	27/15	7/1/5	7/1/5	T .	7 7 5
	1	第十九条:动物饲养场(养	1	上置。综上,项目的	./	
	, KIN				1/2	

隔离场所,动物屠宰加工场所,以满足《中华人民共和国动物防疫 及动物和动物产品无害化处理场法》(2015年修正)要求。 所,应当符合下列动物防疫条件: 一) 场所位置与居民生活区、生活 饮用水源地、学校、医院等公共场 所的距离符合国务院兽医主管部门 规定的标准:(二)生产区封闭隔离, 工程设计和工艺流程符合动物防疫 要求;(三)有相应的污水、污物、病 死动物、染疫动物产品的无害化处 理设施设备和清洗消毒设施设备 (四) 有为其服务的动物防疫技术人 员; (五) 有完善的动物防疫制度; (六)具备国务院兽医主管部门规定 的其他动物防疫条件。 第二十一条:动物、动物产品的运载 工具、垫料、包装物、容器等应当 符合国务院兽医主管部门规定的动 物防疫要求。染疫动物及其排泄物、 染疫动物产品,,病死或者死因不明 的动物尸体,运载工具中的动物排 泄物以及垫料、包装物、容器等污 染物,应当按照国务院兽医主管部 门的规定处理,不得随意处置。

由上表可知,本项目符合相关政策要求。

(5) 与相关规范符合性分析

表 1.4-3 本项目与相关规范的符合性

	文件	规范要求	本项目实际	是否 符合
		应选择地势高燥,处于下风向的地 点	本项目所在区域地势较高,干燥,处于下风向	1
	《病死及病害动		本项目位于沙雅县民富村,厂区	
-1/1/25	5YA '	应远离学校、公共场所、居民住 宅区、村庄、动物饲养和屠宰场	周边 1km 范围内无学校、公共 场所、居民住宅区、村庄、动物	-/Y_ `/
		所、饮用水源地、河流等地区	饲养和屠宰场所、饮用水源地、 河流等地区	
	《禽类屠宰与分	屠宰与分割车间所在厂区应具备可	本项目厂区北侧邻近道路,交通	符合
X 1/15	Z. 1/15			

							**	1
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					3)		(A)
	割车间设计规	靠的水源和电源,周边交流。 1000年11月2日	通运输方	便利,水源、	电源可靠,符合沙			
7//5	范》(GB51219-	便,符合当地城乡规划、	卫生与环	雅县规划。	7 7 5		7//5	
	-2017)	境保护规划。		•	1	1		1
		厂址周围应有良好的环境	竟卫生条	西日田井 11	本国中工业体	10	Y	
	4	件。厂址避开受污染的水	体及产生	1.5/5	m 范围内无水体、		42	3
		有害气体、烟雾、粉尘或	其他污染	元产生有害 [。] 其他污染源的	(体、烟雾、粉尘或			
-1,4/1/5	-2015	源的工业或场所。		共他行来你们	7工业或场份		-1/1/3	
	1	厂 址应远离城市水源地詞	和城市绘	项目评价范围	围内无水源地及取	_	**	
		水、取水其附近应有城市		水口,项目废	水经处理后可排入	13		1
Jan.	2	管网或允许排入最终收纳力		西侧 800m 处	的沙雅县污水处理		10	
(1.) Her				厂处理		<i>></i> >		
4/10-	4/1/2	厂址必须具备符合要求的力		本项目厂区北	上侧邻近道路,交通		4/11/2	
X-Y-		源,应结合工艺要求因地位			电源可靠,符合沙		X	
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		定,并应符合屠宰企业设置	规划的要	雅县城乡规划		18	, I? Y	1
/ A.		求		% .			<u> </u>	
4(0)		厂址周围应有良好的环境工					_ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(3)
		厂区应远离受污染的水体.		Z/ \\\				
7/1/5	《畜禽屠宰加工	7. 1.	.7.		(体、烟雾、粉尘或		7 7 5	
	卫生规范》	源的工业企业或其他产生 地区或场所。	万朵源的	共他万架源的	7.11.业以初州。	符合		1
	(GB12694-2016)	地区或场所。 厂区主要道路应硬化(如混)	総十ポ油	^		,10	Y	
4/10	, K	青路面等)路面平整、易冲		厂区道路进行	万硬化,路面平整、	S		3
		水	DU 1 17 17 1	易冲洗、不利	7水			•
-,405	-1405	<u> </u>	暂存或处	(25)	7/1/25		7.405	
	1	理设施,废弃物应及时清除		, 1	1		**	
		避免对厂区环境造成污染,		厂区设有废弃	序物、垃圾暂存设施	13		1
1/1/2	1	不应堆放废弃设备和其他杂		1/0/2	10		10	
		厂区不应选择对食品有显	著污染的					
407.5	4/05	区域。如某地对食品安全	和食品宜	本项目位于沙	》雅县民富村,四周		4/115	
, A iv	1 th	食用性存在明显的不利影响。	响,且无	均为空地,不	属于对食品有显著		X-Y	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	《食品安全国家	法通过采取措施加以改善,	,应避免	污染的区域。		18	Y	1
/m_	标准食品生产通	在该地址建厂。	•	- 1/2			1/n	
	用卫生规范》	区不应选择有害废弃物以	及粉尘、	项目周边 1kı	n 范围内无有害废	符合		
Zin_)	用上王列(EB/14881-2013)	有害气体、放射性物质和	其他扩散	弃物以及粉尘	之、有害气体、放射		Z/m_V	
X (S)	(52,11651,2013)	性污染源不能有效清除的地		性物质和其他	也扩散性污染源。		XLIST	
		厂区不宜择易发生洪涝灾	 皮害的地	项目所在区址	或非易发生洪涝灾			1
		区,难以避开时应设计必要	要的防范	害的地区。	X II X X X X X X X X X X X X X X X X X	.10	,	
		措施。			4			(1)
			5					*
7/1/25	7.7/15	7.405	7	(25-1	7.405		7/1/25	
一	1		人为	, 1	1	/	术	
						1		1

		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	在场所,难以避开时应设计必要的	区周闱无官有虫害大量孳生的	4
	屠宰与肉类加工废水治理工程的建 设应符合当地有关规划,合理确定	便利, 水源、电源可靠, 符合沙	
《屠宰与肉类加 工废水治理工程	屠宰与肉类加工行业应积极采用节 能减排:及清洁生产技术,不断改讲	项目采用先进的生产工艺,可有	符合
技术规范》 (HJ2004-2010)	生产工艺,降低污染物产生量和排	效降低污染物产生量和排放量, 防止环境污染。	10
	屠宰与肉类加工废水处理工艺应包 含消毒及除臭单元。	项目废水处理工艺包含消毒单 元且进行了有效的除臭措施。	>>

(6) 与"三线一单"符合性分析

根据《关于印发<新疆维吾尔自治区"三线一单"生态环境分区管控方案>的通知》(新政发(2021)18号)和《关于印发<阿克苏地区"三线一单"分区管控方案>的通知》(阿行署发(2021)81号),要求就实施生态保护红线、环境质量底线、资源利用上线和环境准入负面清单(简称"三线一单")生态环境分区管控制定方案。本工程与管控方案相关要求的符合性分析如下。

①生态保护红线

生态保护红线指在生态空间范围内具有特殊重要生态功能、必须强制性严格保护的区域,是保障和维护国家生态安全的底线和生命线,通常包括具有重要水源涵养、生物多样性维护、水土保持、防风固沙、海岸生态稳定等功能的生态功能重要区域,以及水土流失、土地沙化、石漠化、盐渍化等生态环境敏感脆弱区域。

本项目位于沙雅县民富村,根据《新疆生态功能区划》,属于塔里木盆地中部塔克拉玛干流动沙漠生态亚区,塔克拉玛干东部流动沙漠景观与油田开发生态功能区。根据《关于印发《新疆维吾尔自治区"三线一单"生态环境分区管控方案》的通知》(新政发〔2021〕18号)和《关于印发《阿克苏地区"三线一单"分区管控方案》的通知》(阿行署发〔2021〕81号),本项目区属于一般管控单元,不在划定的生态保护红线内。

②环境质量底线

环境质量底线是国家和地方设置的大气、水和土壤环境质量目标,也是改善环境质量的基准线。......项目环评应对照区域环境质量目标,深入分析预测项目

建设对环境质量的影响,强化污染防治措施和污染物排放控制要求。

项目区域内环境空气质量执行《环境空气质量标准》(GB3095-2012)中的 二级标准及修改单,地下水质量执行《地下水质量标准》(GB/T14848-2017)中III类标准,声环境质量执行《声环境质量标准》(GB3096-2008)2类标准,项目区占地范围内土壤执行《土壤环境质量标准建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中表1第二类用地筛选值。本次环评调查显示,项目区域环境质量总体满足相应质量标准要求,对环境影响较小,符合环境质量底线要求。

③资源利用上线

资源是环境的载体,资源利用上线是各地区能源、水、土地等资源消耗不得 突破的"天花板"。

项目供水、供电均由沙雅县循环经济工业园区供应,水、能源利用均在区域 供水、供电负荷范围内,能源消耗均未超出区域负荷上限。

④生态环境准入清单

本项目为肉羊屠宰项目,根据《产业结构调整指导目录》(2019本),属于"一、 农林业,32、农林牧渔产品储运、保鲜、加工与综合利用"鼓励类项目,本项目的 建设符合国家的相关政策。

根据《关于印发新疆维吾尔自治区28个国家重点生态功能区县(市)产业准入负面清单(试行)的通知》(新发改规划[2017]89号)和《关于印发新疆维吾尔自治区17个新增纳入国家重点生态功能区县(市)产业准入负面清单(试行)的通知》(新发改规划(2017)1796号)文规定,本工程所在行政区沙雅县未列入该清单。

对照阿克苏地区生态环境准入清单,项目符合阿克苏市的生态环境准入清单准入要求。

表1.4-4 项目与《关于印发<阿克苏地区"三线一单"生态环境分区管控方案>的通知》符合性分析

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3//		·	V. I	-V. 1	
	环境管	环境	7,105		(25	7,7(25	
	が現 控 単元	管控	1	管控要求		本项目	符合
	名称	单元		日江女小		4 块 口	性
/	107小	类别	, 2 _A	.///^	.7/2		1/2

						1
		» ·				
	环境管 控单元 名称 类别	管	控要求	本项目	符合性	1
		布局约束的要求 2.任何单位和个 田。禁止在基本	人不得擅自占用基本农 农田内从事非农业生产	1.本项目属于肉羊		
		址确实无法避让 占用。	型规定的重点建设项目选 上外,其他任何建设不得 5境法律法规、规划、污	屠宰项目,符合自 治区和阿克苏地区 总体管控要求。 2.本项目不占用基		
		中 崇 如,依法整治; 大矿山,依法表	E态、乱采滥挖的露天矿 对污染治理不规范的露 员令停产整治,对拒不停	本农田。 3.本项目不属于露 天矿山采掘项目。	符合	
- Allo-		责任主体灭失的 绿化、减尘抑生 4.严格控制在优	先保护类耕地集中区域	4.本项目所在区域 不属于优先保护类 耕地区域。		
N. T.	沙雅县 一 般 —	新建土壤环境监目。	i官里点仃业坝		100	1
	一般管 管 控 控单元 单元	1 执行阿克莱州	L区总体管控要求中关于	1.本项目符合阿克 苏地区总体管控要 求中关于污染物排 放管控的准入要	\$\\\\	
		污染物排放管招 2.强化畜禽养殖 畜禽粪污综合和		求。 2.本项目产生的羊 粪集中收集后外售 做肥料加工综合利		1 没 合
A TOP OF THE PERSON OF THE PER	4 t	友排放。 3.严格控制林地 量,禁止使用高	、草地、园地农药使用 5毒、高残留农药。 5垃圾的清运、收集、处	用,增加对待宰圈 清洗次数,增加羊 粪等废弃物的清理 频次,保证待宰圈	符合	
		置。严禁将城镇 宽物直接用作服	养密集区实行畜禽粪污	通风,同时增加屠宰车间的通风次数,及时清理屠宰		
				车间内胃肠容物等 废弃物,最大限度 减少本项目生产区 恶臭排放,并对水		5 1 .///
A THE STREET			8			
						1

环境管 控单元 名称环境 管控 单元 类别		管控要求	本项目	符合性	A Allis
			处理池体、污泥浓 缩池等加盖密闭的 措施,对污水站恶 臭其他进行有组织 收集治理,减少恶 臭气体挥发排放。		A Aller Market
			3.本项目不涉及农 药使用、农村生活 垃圾等。		- 405
	环 境 风 1.执行阿克苏: 险 环境风险防控 管	地区总体管控要求中关于 的准入要求。	本项目符合阿克苏 地区总体管控要求 中关于环境风险防 控的准入要求。	符合	
	1.执行阿克苏 资源利用效率 2.全面推进秸 资 源化、饲料化 源 还田与离田收	秆综合利用,鼓励秸秆资 、肥料化利用,推动秸秆 集。	地区总体官控要求 中关于资源利用效 率的准 λ 要求		
	用 用量,逐步实现效 4.推广渠道防汽率 灌等节水灌溉设施。推进规农作物节水抗	药使用量,增加有机肥使 见化肥农药使用量零增长。 渗、管道输水、喷灌、微 技术,完善灌溉用水计量 模化高效节水灌溉,推广 旱技术。建立灌区墒情测 农业用水效率。	2.项目为肉羊屠宰 项目,不涉及秸秆 综合利用、农药使 用和农作物节水灌 溉等	符合	

综上所述,本项目建设符合"三线一单"要求。

1.5 项目关注的主要环境问题及环境影响

项目位于沙雅县民富村。本评价主要关注的环境问题包括:

一八环评运营期主要关注生产废气、废水、噪声》 一八环评运营期主要关注生产废气、废水、噪声》 一八环评运营期主要关注生产废气、废水、噪声》 一八环评运营期主要关注生产废气、废水、噪声》 (1)废气: 待宰圈粪便每天清理,定期消毒除臭,车间密闭,强制通风; 9 本项目对周围环境的影响主要表现在运营期对大气环境、水环境、声环境的 影响以及固废对环境的影响。本次环评运营期主要关注生产废气、废水、噪声对

屠宰车间车间密闭,强制通风,车间地面及时清洗,固废及时清运,屠宰车间采取车间密闭,强制通风,车间地面及时清洗,固废及时清运;污水处理站池体加盖密闭,污泥及时清运,周围进行绿化,并对产臭池体恶臭气体进行负压收集后引至生物滤池系统处理,处理后废气通过 15m 高排气筒排放。经预测分析,项目废气对周围大气环境影响较小。

- (2)废水:项目锅炉系统排水及循环水系统排水用于厂区泼洒抑尘;项目屠宰废水、车辆冲洗废水、检疫检验废水及职工生活污水经厂内污水处理站处理后排至沙雅县污水处理厂处理,污水处理站采用"预处理+缺氧好氧+MBR+消毒"处理工艺,满足《肉类加工工业水污染物排放标准》(GB13457-92)表3三级标准、《屠宰及肉类加工工业水污染物排放标准》(二次征求意见稿)表3特别排放限值间接排放限值及沙雅县污水处理厂进水水质要求后,最终排入沙雅县污水处理厂进行深度处理。项目废水不外排水体,对周边地表水环境影响很小。
- (3)噪声:项目噪声污染源主要为电麻机、宰杀设备、分割设备、污水处理风机、各类泵机等,声级值在75dB(A)~100dB(A)。项目采取选用低噪声设备、基础减振、风机加装隔声罩、厂房隔声等措施后,厂界噪声贡献值符合《工业企业厂界环境噪声排放标准》(GB12348-2008)2类标准要求。
- (4)固体废物:羊粪集中收集后外售作肥料加工;碎骨肉渣集中收集后定期外售作饲料加工;不合格羊及产品无害化处理后外售做肥料加工;污泥经浓缩脱水后外售堆肥用作农肥;生活垃圾由环卫部门统一收集处理。

1.6 评价结论

沙雅县屠宰加工厂建设项目符合国家产业政策,符合相关规划要求;污染源治理措施可靠有效,污染物均可达标排放,固体废物能得到合理处置,外排污染物对周围环境影响不大,可满足当地环境功能区划的要求;项目符合清洁生产要求;污染物排放总量符合污染物总量控制要求,绝大多数公众支持该项目建设,具有良好的经济和社会效益。在全面加强监督管理,认真落实各项环保措施的条件下,从环境保护角度分析,项目建设可行。

在报告编制过程中得到了阿克苏市环境保护局、建设单位的大力支持和协助,在此一并致谢。

2 总论

2.1 编制依据

2.1.1 法律法规

(1)《中华人民共和国环境保护法》,2015年1月1日;

- (2)《中华人民共和国环境影响评价法》,2016年9月1日;
- (3)《中华人民共和国大气污染防治法》,2016年1月1日修订;
 - (4)《中华人民共和国水污染防治法》,2018年1月1日施行;
 - (5)《中华人民共和国噪声污染防治法》,2022年6月5日;
 - (6)《中华人民共和国固体废物污染环境防治法》,2020年4月29日修订;

- (7)《中华人民共和国清洁生产促进法》,2012年7月1日;
- (8)《中华人民共和国土地管理法》,2020年1月1日;
- (9)《中华人民共和国节约能源法》,2018年10月26日修订;
- (10)《中华人民共和国循环经济促进法》, 2018年12月26日;
- (11)《中华人民共和国城乡规划法》, 2015年4月24日;
- (12)《中华人民共和国动物防疫法》,2021年1月22日修订;
 - (13)《中华人民共和国水法》, 2016年7月2日。

2.1.2 环境保护法规、部门规章

- (1)《国务院关于修改〈建设项目环境保护管理条例〉的决定》,国务院令〔2017〕第 682 号,2017 年 7 月 16 日发布;
 - (2)《国务院关于落实科学发展观加强环境保护的决定》,国发[2005]39号;
 - (3)国务院《关于加强环境保护重点工作的意见》,国发[2011]35 号文;
- (4)《关于进一步加强环境影响评价管理防范环境风险的通知》,环发 [2012]77号,2012年7月3日;
 - (5)《产业结构调整指导目录(2019年本)》,国家发改委令 2019年第 29号;
 - (6)《国务院关于印发大气污染防治行动计划的通知》,国发[2013]37号;
 - (7)《国务院关于印发水污染防治行动计划的通知》,国发[2015]17号;
- (8)《国务院关于印发土壤污染防治行动计划的通知》,国发[2016]31 号,2016 年 5 月 28 日;
 - (9)《建设项目环境影响评价分类管理名录》, 2021年1月1日;
 - (10)《环境保护综合名录(2017年版)》, 2018年2月6日;

- (11)《环境影响评价公众参与办法》,生态环境部令第 4 号,2018 年 7 月 16 日:
- (12)《关于以改善环境质量为核心加强环境影响评价管理的通知》(环环评[2016]150号);
- (13)《国务院办公厅关于印发控制污染物排放许可制实施方案的通知》,国办发[2016]81号,2016年11月10日;
 - (14)《关于实施工业污染源全面达标排放计划的通知》,环监[2016] 172 号;
 - (15)《"十三五"生态环境保护规划》,国发[2016]65号,2016年11月24日;
- (16)《突发环境事件应急管理办法》,环境保护部令第 34 号,2015 年 6 月 5 日执行:
- (17)关于印发《企业事业单位突发环境事件应急预案备案管理办法(试行)》的通知,环发[2015]4号;
- (18)《关于切实加强风险防范严格环境影响评价管理的通知》,环发[2012]98号;
- (19)《病死及病害动物无害化处理技术规范》,农医发[2017]25 号,2017 年 7 月 3 日;
- (20)《排污许可证申请与核发技术规范 农副食品加工工业—屠宰及肉类加工工业》(HJ860.3—2018);
 - (21)《羊屠体检疫规程》, 2010年6月20日;
 - (22)《屠宰与肉类加工废水治理工程技术规范》(HJ2004-2010);
- (23)《关于印发新疆维吾尔自治区大气污染防治行动计划实施方案的通知》,新政发[2014]35号,2014年4月17日;
 - (24)《新疆维吾尔自治区水污染防治工作方案》、新政发〔2016〕21号;
 - (25)《新疆维吾尔自治区土壤污染防治工作方案》,新政发〔2017〕25号;
 - (26)《新疆维吾尔自治区国民经济和社会发展十三五规划纲要》(2015年);
 - (27)《新疆维吾尔自治区环境保护条例》,2017年1月1日;
 - (28)《新疆水环境功能区划》, 2005年11月;
 - (29)《新疆维吾尔自治区主体功能区规划》,2013年3月18日;
- (30)《新疆维吾尔自治区建设项目环境影响评价公众参与管理规定(试行)》,2013年10月25日:
 - (31)《新疆维吾尔自治区重点行业环境准入条件(修订)》,新环发[2017]1

号:

- (32)《新疆维吾尔自治区环境保护"十三五"规划》,新环发[2017]124号,2017 年7月26日;
- (33)《关于印发自治区<建设项目主要污染物总量指标确认办法(试行)>的通知》,新环总量发[2011]86号,2011年3月8日;
- (34)关于印发《新疆维吾尔自治区 2017 年度大气污染防治实施计划》的通知,新政发[2014]35 号,2017 年 8 月 4 日;
- (35)《新疆维吾尔自治区突发环境事件应急预案编制导则(试行)》,2014年4月25日;
 - (36)《阿克苏地区国民经济和社会发展第十三个五年规划纲要》;
- (37)关于印发《阿克苏地区环境保护"十三五"规划》的通知,2017年6月20日;
 - (38)《阿克苏市 2018-2020 年污染防治攻坚战实施方案》。

2.1.3 环境保护技术规范

- (1)《建设项目环境影响评价技术导则 总纲》(HJ2.1-2016);
- (2)《环境影响评价技术导则 大气环境》(HJ2.2-2008);
- (3)《环境影响评价技术导则 地表水环境》(HJ/T2.3-2018);
- (4)《环境影响评价技术导则 地下水环境》(HJ610-2016);
- (5)《环境影响评价技术导则 生态影响》(HJ19-2011);
- (6)《环境影响评价技术导则 声环境》(HJ2.4-2009);
- (7)《建设项目环境风险评价技术导则》(HJ 169-2018);
- (8)《固体废物鉴别标准 通则》(GB34330-2017):
- (9)《畜禽粪便无害化处理技术规范》(NY/T1168-2012);
- (10)《病害动物和病害动物产品生物安全处理规程》(GB16548-2006);
- (11)《无公害畜禽肉产地环境要求》(GB/T 18407.3-2001):
- (12)《病死及害动物无害化处理技术规范》(农医发[2017]25号);
- (13) 农业部印发《畜禽粪污资源化利用行动方案(2017-20120年)》的通知, (农牧发[2017]11号)。

2.1.4 相关文件

- (1)项目登记备案证(项目代码: 2111-652924-20-01-704128);
- (2)《沙雅县屠宰加工厂建设项目可行性研究报告》;

- (3)建设项目环评委托书:
- (4)建设单位提供的其他相关资料。

2.2 评价目的与原则

2.2.1 评价目的

- (1)通过对建设项目场址周围的自然环境和环境质量现状的调查与分析, 为项目建设提供现状材料:
- (2)通过工程分析,查清该项目的污染类型、排污节点、主要污染源及污染物排放规律、浓度和治理情况,确定环境影响要素、污染因子,分析生产工艺的先进性,论证是否采用了清洁生产工艺;
- (3)通过分析本项目可能存在的事故隐患,预测可能产生的环境影响程度及范围,提出环境风险防范措施;
- (4)通过分析项目投产后主要污染物排放对周围环境的影响程度,根据区域环境条件,提出污染物排放总量控制指标;
- (5) 从技术、经济等角度论证拟采取的环保措施的可行性和合理性,必要时提出替代方案,使之对环境的影响降至最低;
- (6) 依据国家有关法律、环保法规、产业政策等,对该项目污染特点、污染防治措施等进行综合分析,从环保角度对工程的可行性作出明确结论,为设计单位设计、环境管理部门决策、建设单位环境管理提供科学依据。

2.2.2 评价原则

突出环境影响评价的源头预防作用,坚持保护和改善环境质量。

(1) 依法评价

贯彻执行我国环境保护相关法律法规、标准、政策和规划等,优化项目建设,服务环境管理。

(2) 科学评价

规范环境影响评价方法,科学分析项目建设对环境质量的影响。

(3) 突出重点

根据建设项目的工程内容及其特点,明确与环境要素间的作用效应关系,根据规划环境影响评价结论和审查意见,充分利用符合时效的数据资料及成果,对建设项目主要环境影响予以重点分析和评价。

2.3 评价内容及评价重点

2.3.1 评价内容

本次环评工作内容有:概述、总论、工程分析、环境质量现状调查与评价、 施工期环境影响分析、运营期环境影响预测与评价、环境风险评价、污染防治措 施可行性论证、环境影响经济损益分析、环境管理与环境监测计划、结论。

2.3.2 评价重点

根据项目污染物排放特点及所处环境,本次评价工作重点为工程分析、环境 影响预测与评价、污染防治措施可行性分析、环境管理与环境监测计划。

2.4 环境影响因素识别及评价因子

2.4.1 环境影响评价因子的识别

根据该项目的生产特点和污染物的排放种类、排放量以及对环境的影响,将 建设和生产过程中产生的污染物及对环境的影响列于表 2.4-1。

4//2	- 1 JUNE 141-17	119 1244 2	4//2			7
XL	环境因素	7	自然环境		生态	环境
影响因素		环境空气	水环境	声环境	土地利用	水土流失
	场地平整	-1D		-1D	-1D	-1D
	地基处理	41D		-1D		
施工期	基建施工	-1D	-1D	-1D		
-1.403	材料运输	-1D	4/03	-1D	-14/15	
45	建筑材料堆存	-1D	1		· 5	
共二冊	物料运输及存储	-1C	-1C	-1C		1/2
营运期	生产工艺过程	-2C	-1C	-1C	_	100

表 2.4-1 环境影响因素识别一览表

- 备注: 1、表中"+"表示正效益,"-"表示负效益;
- 2、表中数字表示影响的相对程度,"1"表示影响较小,"2"表示影响中等,"3"表示影响较大,
 - 3、表中"D"表示短期影响, "C"表示长期影响。

由表 2.4-1 可知,项目建设对环境的影响是多方面的,既存在短期、局部及可恢复的正、负影响,也存在长期的或正或负的影响。施工期主要表现在对自然环境要素及生态环境要素产生一定程度的负面影响,主要环境影响因素为环境空气、声环境、土地利用及水土流失,表现为短期内影响,均随着施工期的结束而消失,营运期对环境的不利影响是长期存在的,在生产过程中,主要影响因素表现在环境空气、水环境和声环境等方面。

2.4.2 评价因子筛选

根据环境影响要素识别结果,结合建设项目工程特征、排污种类、排污去向 及周围地区环境质量概况,确定本次污染源评价因子筛选汇总见表 2.4-2。

表 2.4-2 环境评价因子筛选汇总一览表

7 7			
	环境要素	评价类别	评价因子
	环论农生	现状评价	PM ₁₀ 、PM _{2.5} 、SO ₂ 、NO ₂ 、CO、O ₃ 、HCl、H ₂ S、NH ₃ 、TSP、 非甲烷总烃
	环境空气	污染源评价	颗粒物、 SO_2 、 NO_x 、 H_2S 、 NH_3 、臭气浓度、非甲烷总烃
	*	影响评价	颗粒物、 SO_2 、 NO_2 、 H_2S 、 NH_3 、臭气浓度、非甲烷总烃
		1/63	K ⁺ 、Na ⁺ 、Ca ²⁺ 、Mg ²⁺ 、CO ₃ ² 、HCO ₃ ⁻ 、pH、总硬度、溶解性
	1/m		总固体、硫酸盐、氯化物、铁、锰、铜、锌、挥发性酚类、耗
	ŽĮ.	地下水现状评价	氧量、氨氮、硫化物、硝酸盐(以N计)、亚硝酸盐(以N计)、
	La Date Liv		氰化物、氟化物、汞、砷、硒、铅、镉、六价铬、总大肠菌群、
	水坏境	1	菌落总数、总磷
		污染源评价	COD、BOD ₅ 、SS、氨氮、总氮、总磷、动植物油、总大肠菌群
	4/17:	影响分析	耗氧量、总磷
	\A."	现状评价	等效连续 A 声级
	声环境	污染源评价	A声级
		影响评价	等效连续 A 声级
		污染源评价	一般固废:粪便、碎骨肉渣、污泥、废弃包装袋、废树脂;
	固体废物	目/m ⁴ 八 北 2	危废固废;不合格羊及产品
	XL (3)	影响分析	生活垃圾
	环境风险	风险评价	液氨

2.5 评价标准

2.5.1 环境质量标准

- (1) 环境空气执行《环境空气质量标准》(GB3095-2012)及其修改单二级标准,非甲烷总烃参照执行《大气污染物综合排放标准详解》中相关要求; H₂S、NH₃ 执行《环境影响评价技术导则 大气环境》(HJ2.2-2018) 附录 D 中相关标准:
- (2)地下水环境执行《地下水质量标准》(GB/T14848-2017)Ⅲ类标准,总 磷参照执行《地表水环境质量标准》(GB3838-2002)Ⅲ类标准;
 - (3) 厂界声环境执行《声环境质量标准》(GB3096-2008)中的2类标准。
 - (4) 土壤执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》

HA THE WAR TO SEE THE PARTY OF THE PARTY OF

					1
(GB36600-2	2018)表 1 筛选值第	二类用地标准			3
环境质量 表 2.5-1	量标准值见表 2.5-1~ 环境空气质量标	L.P			1
项目 污染物 SO ₂	年平均 24 小时平均	单位 60 150	标准来源		3
NO ₂	,10)	500 40 80			1
PMIC	24 小时平均	200 70 150 μg/m ³	《环境空气质量标准》(G 二级标准及其修动	.' ////>-'	
环境 空气 PM _{2.:}	日最大8小时平均	35 75 160			3>
co	1 小时平均 24 小时平均 1 小时平均	$ \begin{array}{c c} 200 \\ \hline 4 \\ \hline 10 \\ \end{array} $ mg/m ³			
非甲烷点 NH ₃	19/25 X	$\begin{array}{c c} 2.0 & \text{mg/m}^3 \\ \hline 0.2 & \text{mg/m}^3 \end{array}$	叶胖 // 中相大安	(合排放标准) 求	3>
非甲烷点 NH ₃ H ₂ S 表 2.5-2		0.01 mg/m^3			
环境要素	污染物名称 pH(无量纲)	标准值 6.5~8.5	单位 标准	主来源	1

地下水质量标准

2//2	H_2S	1 小时平均	0.01 mg/m	³ 境》(HJ2.2-20	18) 附录 D 中相关标:	准
A CO	表 2.5-2	地下水质量标准			A STAN	- X-(%)
N.	环境要素	污染物名称	标准值	单位	标准来源	
100		pH(无量纲)	6.5~8.5	1/0	Jan	,/a
W. Klass		总硬度(以 CaCO3 计)	≤450	mg/L	W/klo	V. Klos
Zin-	4/10	溶解性总固体	≤1000	mg/L	Alm =	Zim-
X	XL, i	氨氮	≤0.5	mg/L	XL	X
		硝酸盐氮	≤20	mg/L	《地下水质量标准》	
NY NA	N.Y.	亚硝酸盐氮	≤1.0	mg/L	(GB/T14848-2017)中]	
		挥发性酚	≤0.002	mg/L	★标准	
		氰化物	≤0.05	mg/L	-	
2,405	7,105	耗氧量	≤3.0	mg/L	7,705	7,105
(F)	175	氟化物	≤1.0	mg/L		7
		硫酸盐	≤250	mg/L		
190		氯化物	≤250	mg/L	445	40
(I) The			7	A THE		(I) The
405	40.5	4/17.5	-	7/05	405	7/175
	A. T.		1		1	1
X-			1/1/	1	N. I	

				7	NA II	
Day S	环境要素	污染物名称	标准值	单位	标准来源	D'a No
XLIS	XL!	硫化物	≤0.02	mg/L	X	XLIS
		砷	≤0.01	mg/L		
×	N	汞	≤0.001	mg/L	l d	<i>y</i>
		镉	≤0.005	mg/L	1/2/65	4/0
	11.	铬(六价)	≤0.05	mg/L		
3/405	7,403	铁	≤0.3	mg/L	3,405	3/1/25
(A)	15	锰	≤0.1	mg/L		(A)
		铜	≤1.0	mg/L	K) 1	
410		锌	≤1.0	mg/L	400	40
		铅	≤0.01	mg/L		W. W.
405	40	硒	≤0.01	mg/L	- 405	-405
	1	钠	≤200	mg/L		
		总大肠菌群	≤3.0	MPN/100mL	1	
.10_		菌落总数	≤100	CFU/mL	·	.///
1.4(0)		7.4(0)		1/20	《地表水环境质量标	
4/11	Z/m	总磷	≤0.2	mg/L	准》(GB3838-2002)	2/1/2
XL	Z. W.				Ⅲ类标准	
	表 2.5	-3 声环境质量	<u></u> 上标准	<u> </u>		
A.	项目	污染物	标准值	单位	标准来源	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

表 2.5-3 声环境质量标准

3,403	7.7		7/1/35	Ⅲ类标	惟	
表 2.5	5-3 声环境质量	量标准	7			1
项目	污染物	标准值	单位	标准来源	/A.	/n.
声环境	等效连续 A 声级	昼间 60,夜间 50	dD (A)	《声环境质量标	准》	KIO
严小境	寺双廷织 A 戸级	查问 00,	dB (A)	(GB3096-2008) 2	类标准	
表 2.5	5-4 建设用地=	上壤污染风险筛选	值	单位: m	g/kg	
环境要素	污染物名称	标准值	单位	标准来	源	1
	袖	4 60	mg/kg		√ ∧	√ _

表 2.5-4 建设用地土壤污染风险筛选值 単位・mg/kg

_	-7. VJ		*7.			-1. 43
-	表 2.5-	4 建设用地土壤污	染风险筛选	值	单位: mg/kg	**
	环境要素	污染物名称	标准值	单位	标准来源	1
		神	60	mg/kg	///>	.A.
		镉	65	mg/kg		
	4/10:	铬 (六价)	5.7	mg/kg	4/11=	2/11/2
	X	铜	18000	mg/kg	《土壤环境质量建设	X-Y
1		铅	800	mg/kg	用地土壤污染风险管	5/3
	土壤环境	汞	38	mg/kg	控标准(试行)》	/ A.
	工物和先	镍	900	mg/kg	(GB36600-2018) 表 1	14/0
	1/2	四氯化碳	2.8	mg/kg	第二类用地筛选值标	
	7//3	氯仿	0.9	mg/kg	1/157准	7/1/5
	175	氯甲烷	37	mg/kg		55
		1, 1-二氯乙烷	9	mg/kg		
		1,2-二氯乙烷	5	mg/kg		
			8			
	-,403	-15/05	-/	405	-14/125	-17/1/5
	X 45		<u> </u>			**
			1/1/	اً ا		

)		
Zin_	环境要素	污染物名称	标准值	单位	标准来源	Z/m_\
XL (3)	ŽL,	1,1-二氯乙烯	66	mg/kg	XL13	XLYS
		顺-1,2-二氯乙烯	596	mg/kg		
, ·		反-1,2-二氯乙烯	54	mg/kg		
		二氯甲烷	616	mg/kg		4.00
		1,2-二氯丙烷	5	mg/kg		
-,405	7,403	1, 1, 1, 2-四氯乙烷	10	mg/kg	7,405	7/1/25
(A)	1	1, 1, 2, 2-四氯乙烷	6.8	mg/kg	**	7
		四氯乙烯	53	mg/kg		1
Jan.		1, 1, 1-三氯乙烷	840	mg/kg	Jan.	//IIA
	<	1,1,2-三氯乙烷	2.8	mg/kg		
4/175	4/17:	三氯乙烯	2.8	mg/kg	4/11=	4/11=
X	XL	1, 2, 3-三氯丙烷	0.5	mg/kg	X	X
		氯乙烯	0.43	mg/kg		
·/		苯	4	mg/kg	-/A	1
4(0)		氯苯	270	mg/kg	4(0)	14/0
	1/2	1,2-二氯苯	560	mg/kg		
2,105	7,7(13)	1,4-二氯苯	20	mg/kg	7/05	7/1/35
(7)	1	乙苯	28	mg/kg	T	1
		苯乙烯	1290	mg/kg		
		甲苯	1200	mg/kg		
	<	间二甲苯+对二甲苯	570	mg/kg		
401-5	403	邻二甲苯	640	mg/kg	7/05	- 405
	14	硝基苯	76	mg/kg	- X-1	**
		苯胺	260	mg/kg		1
1/2		2-氯酚	2256	mg/kg	100	In
A Aller Market		苯并[a]蒽	15	mg/kg		(Ka)
Zin.	1/m	苯并[a]芘	1.5	mg/kg	Zin_	Z/m_
XL (3)	ŽL,	苯并[b]荧蒽	15	mg/kg	XL13	XLYS
		苯并[k]荧蒽	151	mg/kg		
, , , , , , , , , , , , , , , , , , ,		崫	1293	mg/kg	,	
4/6		二苯并[a, h]蒽	1.5	mg/kg	4/6	4.20
	4,1	茚并[1, 2, 3-cd]芘	15	mg/kg		
3,405	- 103	萘	70	mg/kg	3/105	3,405
	2.5.2 污染物))		
In	(1)	爱气	./// _~	.1/2	1/n_	1/m
			9			
				اً	1	

2.5.2 污染物排放标准 (1) 密气

有组织恶臭气体执行《恶臭污染物排放标准》(GB14554-93)表2恶臭污染 物排放标准值要求,燃气锅炉烟气排放执行《锅炉大气污染物排放标准》 (GB13271-2014)表 3 大气污染物特别排放限值燃气锅炉标准;无组织恶臭气 体排放执行《恶臭污染物排放标准》(GB14554-93)表1二级新扩改建厂界标准 值,无组织废气中颗粒物、非甲烷总烃、 SO_2 、 NO_X 排放执行《大气污染物综合 排放标准》(GB 16297-1996)表 2 无组织限值要求。具体标准值见表 2.5-2。

表 2.5-2 大气污染物排放标准

XLI		XLI		XLI	XLI	XLI	
表 2.5-	2 大气	〔污染物 排	 放标准			(-)	
>□ >h >h云	>= >± the	排放浓度	排方	坟速 率	II. \(\alpha - I - \rangle \rangle A \)		
污染源	污染物	(mg/m^3)	排气筒(m)	速率(kg/h)	执行标准	120	
污水处理站	H ₂ S	<		0.33	《恶臭污染物排放标准》		
5///2	NH ₃	-,4//25	15	4.9	7///\	-,405	
废气	臭气浓度	**		2000(无量纲)	(GB14554-93) 表 2 标准	**	
	非田岭光场	120	1	10	《大气污染物综合排放标准》		1
	非甲烷总烃	120	.tn_	10	(GB 16297-1996)表2标准	.to_	
化制废气	H_2S	/	15	0.33	《恶臭污染物排放标准》	1/4/00	
1/m	NH_3	- 2/n-		4.9	-//. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Z/m_	
XL 13	臭气浓度	XE!		2000(无量纲)	(GB14554-93) 表 2 标准	XLIS	
	颗粒物	20	1.		《锅炉大气污染物排放标准》		1
燃气锅炉	SO_2	50		,	(GB13271-2014) 表 3 大气	,	
烟气		150			污染物特别排放限值燃气锅		
	NO _x	150			炉标准		
-,403	H_2S	厂界一	一次最大值≤0	0.06mg/m ³	// TE	-14/15	
135	NH ₃	厂界-	一次最大值≤	1.5mg/m^3	《恶臭污染物排放标准》	*	
工和加索层	臭气浓度		20(无量纲)	(GB14554-93)表 1 标准		1
无组织废气	颗粒物	周界外	浓度最高点	≤1.0mg/m ³	《大气污染物综合排放标准》	,/0,	
	SO_2	周界外	浓度最高点<	(0.40mg/m ³	(GB 16297-1996)表 2 无组	(1) Klo.	
Z/m	NO_X	周界外	浓度最高点≤	0.12mg/m ³	织排放限值	Z/m=	
-, ((/5)	,	-, ((//-)			-, '(/'-)	((/-)	

(2) 废水

项目废水执行《肉类加工工业水污染物排放标准》(GB13457-92)表3三级 标准、《屠宰及肉类加工工业水污染物排放标准》(二次征求意见稿)表3特别排 放限值间接排放限值及沙雅县污水处理厂进水水质要求。

项目废水执行标准 表 2.5-3

-						3/
	1		《肉类加工工业水	《屠宰及肉类加工	\ \tag{\tau}	
	福日	单位	污染物排放标准》	工业水污染物排放	沙雅县污水处	本项目执行
	项目	中12	(GB13457-92)表3	标准》(二次征求	理厂进水水质	标准
		4(0)	中三级标准	意见稿)表3		4 (0)
		10.		10	./.	(12.
	-,4/15	/	-,405	-14/15	-,4//	25
	1		1	1	**	
				1		18
				N'		

1/2		1/2	间接排放限值	Ź.	
pН	无量纲	6.0~8.5	6~9	6.5~9.5	6.0~8.5
COD	mg/L	≤500	≤500	500	≤500
BOD_5	mg/L	≤300	≤300	350	≤300
SS	mg/L	≤400	≤400	400	≤400
氨氮	mg/L	(1) 7/1/2	≤45	45	≤45
总氮	mg/L	1/m =	≤70	70 💋	≤70
总磷	mg/L	XL ii	≤8	8	≤8.0
动植物油	mg/L	≤60	≤50	100	≤50
粪大肠菌群数	个/L		≤10000		≤10000
单位产品基准		6.5~3/4()江屋重	0.3m³/头		0.3m³/头
排水量	74.	6.5m³/t(活屠重)	U.SIII /天		0.5曲/失

(3)施工期噪声执行《建筑施工厂界环境噪声排放标准》(GB12523-2011)相关标准。运营期厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)中2类标准。各时段噪声标准值见表 2.5-4。

表 2.5-4 各时段厂界环境噪声排放标准

(二)为. <u>()</u> ()	噪声限值	直 dB(A)	+h (=+=\A;
污染源	昼间	夜间	执行标准
施工期	70	55	《建筑施工厂界环境噪声排放标准》(GB12523-2011)
运营期	60	50	《工业企业厂界环境噪声排放标准》(GB12348-2008)2 类标准

(4)一般固废执行《中华人民共和国固体废物污染环境防治法》(中华人民共和国主席令(第四十三号))中的有关规定;危险废物执行《危险废物贮存污染控制标准》(GB18597-2001)及其修改单中的有关规定。

2.6 评价等级及评价范围

依据导则规定,结合该项目的性质、规模、污染物排放特点及污染物排放去 向和周围环境状况,确定本次环境影响评价等级。

2.6.1 大气评价等级及范围

(1) 大气环境评价等级划分依据

根据《环境影响评价技术导则大气环境》(HJ2.2-2018)中的有关规定,将 大气环境影响评价工作分为一、二、三级,大气环境影响评价分级判据见表 2.6-1。

表 2.6-1 评价工作级别判据表

评价工作等级	评价工作分级判据	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
一级	P _{max} ≥10%	
二级	1%≤P _{max} <10%	JOA.

THE STATE OF THE S

W. A.

H.A.

P_{max}<1
(2) P_{max} 及 D_{10%}的计算
根据工程分析结果,选用《环境影响评价技术导则大气环境》(HJ2.2-2008)
中推荐模式中的估算模式,选择正常排放的主要污染物及排放参数。公园(*)
要污染物的下风向最大落地浓度 P_{max} 的占标本。
对应的最远距离 P 对应的最远距离 D_{10%},依据表 2.6-1 判据进行大气评价等级判定。

W. W.

N. A.

A TOTAL STATE OF THE PARTY OF T

依据《环境影响评价技术导则》(HJ/T2.2-2008)中最大地面浓度占标率的计 算公式:

 $P_i = C_i \times 100\%/C_{oi}$

式中: Pi——第 i 个污染物最大地面浓度占标率, %;

 C_i ——采用估算模式计算出的第i个污染物的最大地面浓度, mg/m^3 ;

 C_{oi} —第i 个污染物环境空气质量标准, mg/m^3 。

根据源强和排放方式,结合项目生产特性,项目对有组织排放污染物的最大 排放速率进行估算;无组织排放污染源选取污泥脱水车间无组织排放的废气。

项目污染源源强和估算模式参数取值见表 2.6-2 和表 2.6-3。

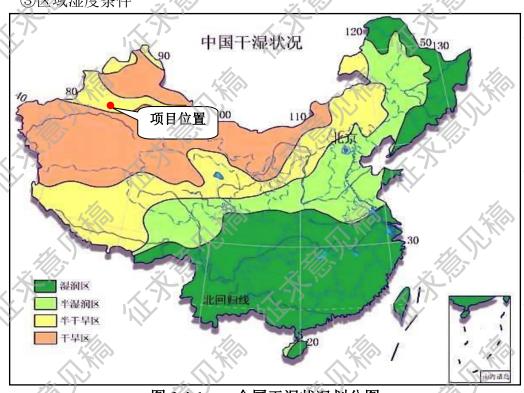
北方原则樣 估算模式参数取值一览表(点源)

	•	1/05		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bu.						7			**					
	`	表 2.6-2	估算模	式参数取值	1一览表	(点源)	dos		,10	× ./>	7	100	. 1/2		,10	×.		JON	· NA
4/10=	编品	名称		部中心坐标	排气筒底 部海拔高	排气筒高	排气筒出	- 2	Y/\\	年排放 小时数	排放工	N. C.		25%	速率 kg/l		非甲烷	D.Kilos	, 4)
- A-100	号 1 1	锅炉烟气	-124	-135	度/m 970.9	度/m	口内径/m 0.35	/ (m/s)	度/℃ 80	/h	连续	H ₂ S		**	.32 0.05		总烃		N. A.
	2	污水处理站	-	-200	972.1	15	0.35	14.4	20	2400		0.0003	- (-)					4.	, 173
	3	化制废气	-108	-88	970.8	15	0.25	17.0	80	2400	连续	0.0005	0.0012	2	/4/		0.03		•
Zin-		表 2.6-3	估算模	式参数取值	1一览表	(面源)					2/10			2/1/			1/10		Z)
XL (S)		ZL IS	面》	原坐标		Z		与正北门	面源有效		X	?	,	البلكد	5)	.	-XL	7	ZL.

表 2.6-3 估算模式参数取值一览表(面源)

\\\\	2	污水处理站	-73	-200	972.1	15	0.35	14.4	20	2400	连续(0.0003 0.0	08	_/			√ _	
	3	化制废气	-108	-88	970.8	15	0.25	17.0	80	2400	连续	0.0005 0.00	012	14/0		0.03		
		表 2.6-3	估算模	式参数取值	一览表(面源)			2/2		Z/m		Ź			Da Vi	<u> </u>	25/
XL.	编	X	面	源坐标	│ 面源海拔	面源长) 面源宽度	与正北	面源有效	年 排放	排放工		污染物	排放速率/	(kg/h)			XL.
	号	名称	\mathbf{X}^{-1}	Y	高度/m	V 1 -	/m	1///	排放高度	小时数/		1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	 		/>		
/			-/-		-		-/:	(°)	/m		1	H ₂ S	NH ₃	SO ₂	NO ₂	TSP	70	
	2	屠宰车间	-91	-106	972.2	178	61 24.1	7	8.1	2400	连续	0.0015	0.012	0.01	0.006	0.01		
4/11/2	3	待宰圈 污水处理站	-69 -82	-192 -209	972.0 971.8	26.6	12	7	3.5	2400 2400	连续	0.0001	0.002			4////		2//
N. A. C.	3	打水及建筑	-02	72037	7/1.0	7	12	茶、		2400		0.0002	0.004			K '		A. Y.
	1		1		1				,	1		1			1			
10			100		100		100		10			100		100		K.		
			I Klin											(1) All			VII.	
4/125)	-,40.5			3-1	-/	405		-1405		-,4/	25		405		-,4//
		1.75		1		**		人为			7			1	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	7		X.45
	1		1		1/2							1						
1/2					190		190		1.0			100		1/16	>	4	100	
							(1) Kill	13				P. Ku					VII.	
7/1/25		7/1/3	7	-1405		-,4/1	5	.7/.	405		-,4/15		7.4	25		7/15		-,7//
大		人为	4	人等		"大"		人外			7	_4	人外	1		7		人书
	1		1		1K					1/11/		1			1/11/	•		

(3) 估算模型参数


①城市/农村选项

项目位于新疆沙雅县民富村,周边均无城市建成区或规划区,因此选择农村。

②地表参数

评价区域内土地利用类型主要为戈壁,因此土地利用类型选沙漠荒地。

③区域湿度条件

全国干湿状况划分图 图 2.4-1

根据图 2.4-1,项目区域湿度条件位于半干旱区,为干燥气候。

④估算模型参数

估算模型参数见表 2.6-4。

表 2.6-4 估算模型参数表

	2 745 多	数分为	取值	7/05
	地主(内针)(西	城市/农村	农村	1-15
	城市/农村选项	人口数(城市选项时)		
>	最高环境	竟温度/℃	41.2	120
	最低环境	竟温度/℃	-24.2	
	土地利	用类型	沙漠荒地	-17/17-5
L	区域湿	度条件	干燥气候	**
	是否考虑地形	考虑地形	是	1
L	是自写心地形 ————————————————————————————————————	地形数据分辨率/m	90	JON
•	(1) He.	14	iles (1) iles	(1.) Klas
	4/175	4/125	4/175	4/115
	A N		A N	X
	1			, j

	是否考虑岸:		考虑岸线熏烟 岸线距离/km 岸线方向/°	香 /	
A TOP THE REAL PROPERTY OF THE PARTY OF THE	本项目所有	X (1/3)	放的污染物的 P _{max} 和		
405			15		

ALEXANTON LEXALEDITION LEXALEDI

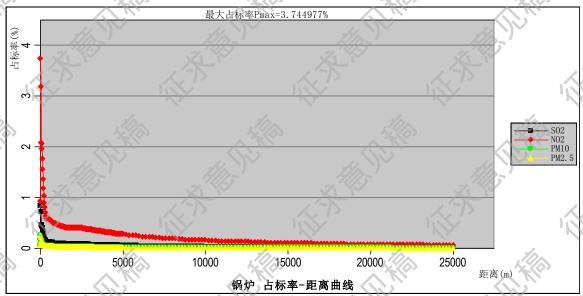


图 2.6-2 锅炉烟气污染源 Pmax 和 D10% 预测结果折线图

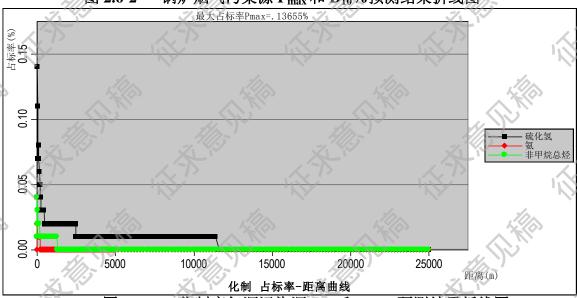


图 2.6-3 化制废气源污染源 Pmax 和 D10% 预测结果折线图

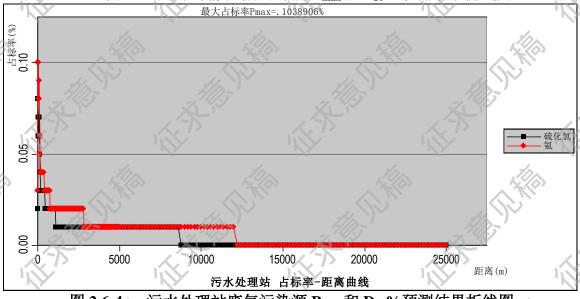
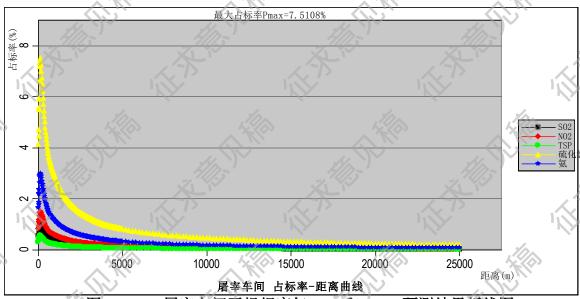



图 2.6-4 污水处理站废气污染源 Pmax 和 D10%预测结果折线图

屠宰车间无组织废气 Pmax 和 D10%预测结果折线图 图 2.6-5

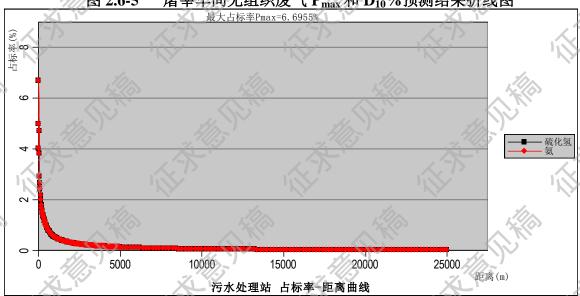
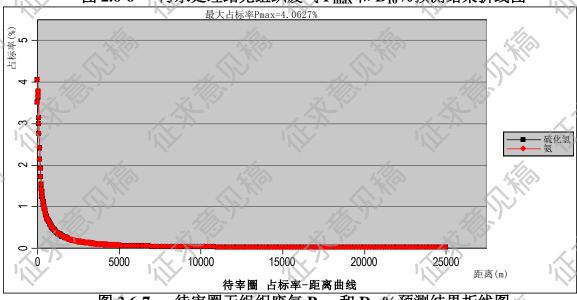



图 2.6-6 污水处理站无组织废气 Pmax 和 D10%预测结果折线图

待宰圈无组织废气 P_{max}和 D₁₀%预测结果折线图 图 2.6-7

表 2.6-5 P_{max} 和 D_{10%}预测和计算结果一览表

17///3		1421014 1: 11	17///2		47////	
污染源名称	评价因子	评价标准 (μg/m³)	$C_{\text{max}}(\mu g/m^3)$	P _{max} (%)	D _{10%} (m)	评价等级
	SO_2	500	4.2131	0.84		三级
妇心山四年	NO _X	200	7.4899	3.74		全级
锅炉烟气	PM_{10}	450	1.1703	0.26	-7.	三级
3,405	PM _{2.5} /	22	0.5851	0.26	J. 405	三级
VE JU 61 THEFE	H_2S	10	0.0078	0.08	75-	三级人
污水处理站	NH_3	200	0.2077	0.10		三级
13	H ₂ S	10	0.0136	0.14		三级
化制废气	NH ₃	200	0.0327	0.02	🔷	三级
4/125	非甲烷总烃	2000	0.8193	0.04	4/125	三级
A TO	TSP	900	5.0071	0.56		三级
	H_2S	10	0.7511	7.51	/	二级
屠宰车间	NH ₃	200	5.9978	3.0	-	二级
	SO_2	500	5.0072	1.0		二级
	NO ₂	200	3.0079	1.50	4/	二级
/	H_2S	10	0.6695	6.70	Z 1/25	二级
待宰圏	NH ₃	200	13.3910	6.70	->-	二级人
NEW ANTHON	H_2S	10	0.4062	4.06		二级
污水处理站	NH ₃	200	8.1254	4.06		二级

(5) 确定大气评价等级

综合以上分析,本项目 P_{max} 最大值出现为面源排放的 H_2S , C_{max} 为 $0.7511\mu g/m^3$, P_{max} 值为 7.51%,根据《环境影响评价技术导则大气环境》(HJ2.2-2018)规定,项目 P_{max} =7.51%<10%,确定该项目大气环境影响评价工作等级为二级。

(6) 评价范围

根据评价工作等级、确定环境空气评价范围为以厂址中心区域,边长为 5km 的矩形区域,评价面积为 25km²。

2.6.2 水环境评价等级及范围

2.6.2.1 地表水环境评价等级及范围

本项目废水主要屠宰废水、车辆清洗废水、检疫检验废水、锅炉系统排水、循环水系统排水及生活污水,锅炉系统排水及循环水系统排水用于厂区泼洒抑尘;项目屠宰废水、车辆冲洗废水、检疫检验废水及职工生活污水经厂内污水处

理站处理后排至沙雅县污水处理厂处理,不外排,不会对地表水环境产生明显影响。

根据《环境影响评价技术导则 地表水环境》(HJ2.3-2018)中的评价等级判定依据,本项目地表水环境影响评价等级为三级 B。

2.6.2.2 地下水环境评价等级及范围

(1) 项目类别

根据《环境影响评价技术导则 地下水环境》(HJ 610-2016)附录 A,本项目属于 N 轻工中 98、屠宰(年屠宰 10 万头畜类(或 100 万只禽类)及以上),因此地下水环境影响评价项目类别为"III 类"。

(2) 建设项目地下水环境敏感程度

本项目场地及评价范围内无集中式饮用水水源(包括已建成的在用、备用、应急水源,在建和规划的饮用水水源)准保护区及其补给径流区,也没有除集中式饮用水水源以外的国家或地方政府设定的与地下水环境相关的其它保护区;项目地下水调查评价范围内也不存在分散式饮用水水源地(评价区内村庄供水由厂区东南 3.6km 处沙雅县托依堡勒迪镇排孜瓦提水厂供给,该水厂位于评价区外),因此本次工作将项目地下水环境敏感程度定为"不敏感"。

(3) 建设项目评价工作等级

《环境影响评价技术导则 地下水环境》(HJ610-2016)中对地下水环境影响评价工作等级的划分情况如下:

ŕ				
	项目类别 环境敏感程度	I 类项目	Ⅱ类项目	Ⅲ类项目
>	敏感			
	较敏感	4/17.5	4/13	4/15=
	不敏感	X =	=	* =

表 2.6-6 建设项目地下水环境影响评价工作等级分级表

本项目地下水环境影响评价类别为"III 类"项目,建设项目地下水环境敏感程度定为"不敏感",根据《环境影响评价技术导则 地下水环境》(HJ 610-2016)中表 2,本项目地下水评价等级定为"三级"。

(4) 地下水评价范围

根据《环境影响评价技术导则 地下水环境》(HJ610-2016)中的相关技术要求,本次工作采用公式计算法确定地下水环境现状调查与评价范围。

公式: L=a×K×I×T/n_e

式中: L-下游迁移距离, m;

a-变化系数, a≥1, 一般取 2;

K-渗透系数, m/d; 取经验值为 5.0m/d。

I-水力坡度, 无量纲; 取值为 0.5‰。

T-质点迁移天数;取值为5000。

Ne-有效孔隙度,无量纲。取值 0.21。

计算得出 L=119m。

采用该方法时应包含重要的地下水环境保护目标。

本项目水文地质条件简单,项目附近无明显分水岭。根据水文地质资料:潜 水含水层岩性以细砂为主,水平渗透系数取 5.0m/d。根据《环境影响评价技术导 则—地下水环境》(HJ610-2016)附录 B,其有效孔隙度取 0.21,水力坡度取 0.5‰; 质点迁移天数取 5000d,计算得出,下游迁移距离约为 119m; 考虑到建设项目 周围的地形地貌特征及水文地质条件和周围的地下水环境敏感目标,本次评价适 当扩大了评价范围,形成的调查与评价区面积约5.35km²。

1/15

图 2.6-1 项目地下水调查评价范围图

2.6.3 声环境评价等级及范围

(1) 环境特征

区域声环境为《声环境质量标准》(GB3096-2008)规定的 2 类功能区,厂址周围无学校、疗养院、医院及风景游览区等敏感目标。

(2) 声环境评价等级及范围

本项目将采取完善的噪声防范措施,预计投产后环境噪声增加值小于 3dB (A),且受影响人口不发生变化,不会对周围环境产生明显影响。

综合以上分析,确定本项目声环境评价等级为二级,评价范围为厂界外 200m。

2.6.4 环境风险评价等级及范围

(1) 风险评价等级划分依据

根据《建设项目环境风险评价技术导则》(HJ169-2018),进行环境风险评价等级的确定。环境风险评价工作等级划分为一级、二级、三级。风险评价等级划分依据见表 2.6-8。

表 2.6-8 环境风险评价工作等级划分依据表

	10.7			
环境风险潜势	$IV \cdot IV^+$	() III	///_II	Y ₁
评价工作等级	- (1)	=	(C) ^N E	简单分析

(2) 风险评价等级划分确定

根据《建设项目环境风险评价技术导则》(HJ169-2018)风险评价等级划分依据,本项目大气环境风险潜势为 I 级,评价工作等级划分为简单分析; 地表水环境风险潜势为 I 级,评价工作等级划分为简单分析; 地下水环境风险潜势为 I 级,评价工作等级划分为简单分析。

(3) 评价范围

根据《建设项目环境风险评价技术导则》(HJ169-2018)评价范围确定依据, 本项目环境风险评价范围为自项目边界外延 500m 的矩形区域。

2.6.5 土壤环境评价等级及范围

(1) 评价等级的确定

项目属于污染影响型,根据《环境影响评价技术导则土壤环境(试行)》(HJ964-2018),建设项目土壤环境影响评价工作等级的划分应依据建设项目行

业分类、污染影响型敏感程度、占地规模进行分级判定:

对照《环境影响评价技术导则土壤环境(试行)》(HJ964-2018) 附录 A 表 A.1,本项目属于IV类项目,无需进行土壤评价。

2.6.6 生态评价工作等级及范围

(1) 评价等级

根据《环境影响评价技术导则-生态影响》(HJ19-2011)的规定,生态影响评价等级可根据影响区域的生态敏感性和评价项目的工程占地范围确定。本项目总征地面积为 0.0315km²,小于 2km²,项目所在地地貌类型属于陕北区域常见的荒沙草滩地貌,生态敏感性一般。具体判定见表 2.6-12。

2.6-12 生态影响评价工作等级划分表

		工程占地 (含水域) 范围	围入
影响区域生态敏感 性	长度≥100km	长度 50km~100km	长度≤50km
	面积≥20km²	面积 2km²~20km²	面积≤2km²
特殊生态敏感区	一级	一级	一级
重要生态敏感区	一级	二级	三级
一般区域	二级	三级	三级

(2) 评价范围

项目评价范围为厂界外扩 200m 范围内。

2.7 环境保护目标与污染控制

项目选址位于沙雅县民富村,根据现场勘查,评价区域内无国家规定的文物保护单位、风景名胜区、革命历史古迹、饮用水源地等环境敏感点,且周边 3km 范围内无居住区、学校及医院等环境敏感点。项目主要环境保护目标与保护级别见表 2.7-1。

表 2.7-1 环境保护目标及保护级别

名称	<u></u>	丛标	保护对象	保护	VII(Y)	环境功能区	相对项目	相对项目
12/10	经度	纬度	M1 V1 30	内容		275元2716区	方位	距离 (m)
	82.73827	41.13546	排孜阿瓦提二村	居住区	120	WAR HE	Е	/1178
	82.74514	41.13684	排孜阿瓦提村	居住区	30	《环境空气质	E	1543
环境		41 12500	排孜阿瓦提一村	見食豆	4/07	量标准》 (GB3095-201	4/10-	2105
空气	82.75312	41.13598	二小队	居住区	80	(GB3093-201 2)二级标准及	E	2105
1	82.74282	41.14293	排孜阿瓦提二村	居住区		其修改单要求		1374
1	02.74202	41.14293	一小队	卢比区	200	六岁以十女八	INE.	13/4

	1					>
		82.73947 41.147568 排孜阿瓦提二	村 居住区 180		E 1425	
		本项目场地周围不存在集中式饮用力	The state of the s	N	7	
	地下水	散式饮用水水源地,因此本项目地了 区域潜水含水层	下水环境保护目标为	《地下水质』 (GB/14848-2	*	
	声环境	7///2 厂界	≤60dB (A) ≤50dB (A)	《声环境质量标准》	(GB3096-2008)	
		保护对象	人口(人)	与厂址相对方位	与风险源相对 距离(m)	
		排孜阿瓦提二村排孜阿瓦提村	120 30	E E	1178 1543	
A 105	-170	排孜阿瓦提一村二小队 排孜阿瓦提二村一小队	260	E NE	2105	
	风险	排孜阿瓦提二村二小队 排孜阿瓦提一村一小队	180	NE NE	1425 2710	
7/11/5		墩力买村 英也尔村团结村	150 220	NW NW	3878 4367	4/15
		奥依玛特阔坦村 阿克勒克村一小队	310 480	NW SE	3124 4951	
		英也尔村团结村 奥依玛特阔坦村 阿克勒克村一小队				
A Maria Maria						
			23			

3 工程概况及工程分析 3.1 工程基本情况 3.1 工程

N. A. T.

H.A.

- (5) 建设规模: 年屠宰肉羊 30 万只。 (6) 项目总投资及环保投资: 工程总投资 7200 万元, 其中环保投资 458 万元, 占工程总投资的 6.36%。 (7) 项目占地: 项目厂区位于沙雅旦中宁' (8) 项旦进一

- - (8) 项目劳动定员及工作制度:本工程劳动定员80人,年工作300天。
 - (9) 项目建设进度:预计 2023 年 3 月底竣工投产。

3.1.2 工程组成

、间、速荡 以上来。 以上来, 以上来, (以上来) 项目主要建设内容包括屠宰车间、待宰圈、物料库、排酸间、速冻库、成品 容见表 设施。

项目工程组成内容表

	表 3.1-1	项目工程组成内容表			
XL 15		次日工程記版门行名	建设内容	XIII-	X2.105
	待宰圈	1座,1层,建筑面积	只 1492m²,用于肉羊暂	时存养及检疫	1
	屠宰间	.7/7^	空线 2 条,主要用于肉皂 剂静腔、内脏加工,内置 等设备	.7/7^	.7//>
7/05-1	主 屠 体 宰 排酸间 工 车	主要用于屠宰肉羊胴 之间,排酸时间 12-2	体、内脏及头蹄尾排酸	***	
	程 间 分割间 速冻间 冷藏间	分割间入口设置生活 速冻间控制温度-30℃	包表,以直相应机、列 间,设置更衣、浴厕、 C,用于主产品及副产品 C,用于主产品及副产品	洗手、消毒等卫生设) 品的速冻	
	物料库病蓄隔离区	1 层,建筑面积 1186 建筑面积 54m²,位于行	m ² ,用于水处理药剂等 持宰圈南侧,与待宰圈隔码 设置 1 台 6t/h 燃气锅炉	等辅料暂存 离,设有病蓄隔离间、急	李间
	综合用房	筑面积 化制间: 216m² 废弃物间	用于不合格产品及病死 :用于废弃物暂存	Z羊的无害化处理	
	助 下 行水处理站	隔油沉砂—调节—缺水及其他废水进行处	计处理能力 1000m ³ /d, 氧一接触氧化一沉淀一理,采取在线监测措施	-消毒"工艺,对屠宰车 ,处理达标后废水(出	E间废 L口设
	综合办公楼	处理厂进一步处理 1座,2层,用于日常	-7. 4.5/	生线监测)排入沙雅县	
	供电公	器1台,年用电量为	环经济工业园区供电网 342万 kW h		
Z Direction of the second	供水 供热 工 供気	项目设置 6t/h 燃气锅炉	,m ³ ,依托沙雅县循环。 沪1台,为屠宰生产及生 少雅县循环经济工业园区	上活供热	
	制冷	冷系统、分割制冷系	系统,包括速冻制冷系 统,制冷剂采用 R134A 玉收集+生物滤池系统+	A,总制冷负荷为 2650	
Z Dinkin	环 有组织 保 废 工 气	锅炉烟气:燃天然气+化制废气:生物滤池;	低氮燃烧器+15m 高排生系统+15m 高排生	三 筒	A TOP THE REAL PROPERTY OF THE PARTY OF THE
	工 气 程 无组织	屠宰车间:车间密闭,	理,定期消毒除臭,车间 强制通风,车间地面及 胜加盖密闭,污泥及时流	及时清洗,固废及时清运	
		A THE TOTAL PROPERTY OF THE PARTY OF THE PAR	25	THE REAL PROPERTY.	

**		
ZYm)	项目	建设内容
XL, S		锅炉软水排水及排污水: 厂区泼洒抑尘
	废水	屠宰废水:经厂区污水处理站处理后排至沙雅县污水处理厂;
,		生活污水: 经厂区污水处理站处理后排至沙雅县污水处理厂
	噪声	选用低噪声设备,采取基础减振、厂房隔声、风机加装消声器等
		粪便:外售综合利用;碎骨肉渣外售饲料厂作饲料
3/1/25	2,705	不合格产品及病死羊: 送至采用无害化处理后, 外售作肥料原料
*	固废	污水处理站污泥经浓缩脱水后外售堆肥用作农肥;
Y		废树脂:外售综合利用
190	201	生活垃圾:交由当地环卫部门统一收集处理
	其它	厂区分区防渗

3.1.3 总平面布置

厂区大门设于厂区东北部,综合楼设于厂区北部,屠宰车间、待宰圈自北向 南设于厂区东部,其中屠宰车间设置两侧,一层为生产区,二层为办公区,物料 库设于屠宰车间西侧,厂区平面布置图见附图 3。

3.2 产品方案

3.2.1 主要产品

项目年屠宰肉羊 30 万头, 主要产品包括冷鲜、冷冻分割肉、排骨、腔骨等 主产品以及猪血、猪毛、猪下水等副产品,猪肉质量应符合《鲜冻畜肉卫生标准》 (GB2707-2005), 其产品方案见表 3.2-1。

产品方案一览表 表 3.2-1

序号		名称	产量(t/a)
1	主产品	生鲜羊肉	6000
2		羊血	355
3		羊头	480
4//	司本口	羊皮	720
-5	副产品	红白内脏	1350
6	1	羊蹄、尾、油脂	420
7		羊骨	1860

3.2.2 产品质量标准

大学

羊肉执行《羊胴体及鲜肉分割》 (GB/T 39918-2021)。可食内脏执行《绿色 食品畜禽可食用副产品》(NY/T 1513-2007)表 2 及表 4 中相关规定。

3.3 原辅材料及能源消耗

3.3.1 原辅材料消耗

本项目为肉羊屠宰项目,其主要原料为肉羊,和田地区肉羊养殖业稳步发展 可为企业货源供应提供有力支撑。新疆维吾尔自治区有大量肉羊存栏,2021年 底,全自治区肉羊存栏数为4523.4万只,可以满足企业货源需求

原材料消耗 单位 年耗量 原料 肉羊 万头/a 30 辅料消耗 年用量(t/a) 储存量t 包装形式 备注 名称 形态 NaOH 固态 袋装, 25kg/袋 水处理药剂, 暂存于物料库 5 PAM 固态 袋装, 25kg/袋 水处理药剂, 暂存于物料库 8 PAC 固态 25kg/袋 袋装, 水处理药剂, 暂存于物料库 6 CaO 10 固态 袋装, 25kg/袋 水处理药剂, 暂存于物料库 NaClO 固态 袋装, 25kg/袋 消毒剂, 暂存于物料库

表 3.3-1 主要原辅材料用量表

(1) NaOH

NaOH, 俗称烧碱、火碱、苛性钠, 纯品是无色透明的晶体, 密度 2.130g/cm³。 熔点 318.4℃。沸点 1390℃,工业品含有少量的氯化钠和碳酸钠,是白色不透明 的晶体。

(2) PAC

PAC,简称聚铝,黄色固体,一种新兴净水材料,无机高分子混凝剂,是介 于 AICI₃ 和 AI(OH)₃, 之间的一种水溶性无机高分子聚合物, 化学通式为 AI₂Cl_n (OH)_{6-n}, 易溶于水, 熔点 190℃(253kPa)。

表 3.3-2	衆合氯化铝(PAC)	质重指 标
Z	Z (13)	7
1	, -	

XL XL		泛	指标 人	
指标名称	液	体	固	体
	一等品	合格品	一等品	合格品
相对密度(20℃)/(g/cm³) ≥	1.19	1.18	//	<u> </u>
氧化铝(Al ₂ O ₃)含量/% ≥	10.0	9.0	29.0	27.0
盐基度/%	50.0~85.0	45.0~85.0	50.0~85.0	45.0~85.0
水不溶物含量/% ≤	0.5	1.0	1.5	3.0
pH (1%水溶液)	1	3.	5~5	

(3) PAM

PAM,聚丙烯酰胺,是一种线型高分子聚合物,是水溶性高分子化合物中应用最为广泛的品种之一,聚丙烯酰胺和它的衍生物可以用作有效的絮凝剂、增稠剂、纸张增强剂以及液体的减阻剂等,广泛应用于水处理、造纸、石油、煤炭、矿冶、地质、轻纺、建筑等工业部门。

表 3.3-3 聚丙烯酰胺 (PAM) 质量指标

15	指标名称		一等品	合格品	
	固含量(固体)/%	<u> </u>	90.0	87.0	
丙烷	斧酰胺单体含量(干基)/%	≤,//	0.10	0.20	
溶角	解时间(阴离子型)/min	<u>A</u>	90	120	
溶角	解时间(非离子型)/min	≤	150	240	
筛组	余物(1.00mm 筛网)/%	<u> </u>	10	10	
筛	余物(180μm 筛网)/%	≥	80	80	

(4) CaO

CaO, 白色固体,熔点 2572℃ (2845K),沸点 2850℃ (3123K),与水反应, 生成微溶的氢氧化钙。

3.3.2 储运方案

项目设1座待宰圈用于存放待宰肉羊,屠宰车间内设冷藏间等,用于存放加工得到的主副产品,项目具体储运方案见表 3.3-4。

表 3.3-4 项目原材料及产品储运方案

	MV.		ACV.	MVV.	
4//5	物料	运输方式	储存方式	储存周期(天)	储量
原料	肉羊	汽车	待宰圈	1-)	1000 头
主产	冷鲜、冰冻分割肉	汽车	冷藏间	5	120t
品	羊下货副产品	汽车	冷藏间	5	30t
	羊头	汽车	冷藏间	5	0.5 万个
副会	羊尾	汽车	冷藏间	5	0.5 万根
1///25	羊蹄	汽车	冷藏间	5	2 万个
ПП	羊小肠	汽车	冷藏间	5-	0.5 万根
	羊皮	汽车	冷藏间	5	0.5 万张
	主产	原料 肉羊 主产 冷鲜、冰冻分割肉 品 羊下货副产品 羊头 羊尾 品 羊麻 よ外肠	原料 肉羊 汽车 主产 冷鲜、冰冻分割肉 汽车 品 羊下货副产品 汽车 羊头 汽车 羊尾 汽车 羊蹄 汽车 羊小肠 汽车	原料 肉羊 汽车 待宰圈 主产 冷鲜、冰冻分割肉 汽车 冷藏间 品 羊下货副产品 汽车 冷藏间 羊头 汽车 冷藏间 羊尾 汽车 冷藏间 羊蹄 汽车 冷藏间 羊小肠 汽车 冷藏间 汽车 冷藏间 汽车 冷藏间	原料 肉羊 汽车 待宰圈 1 主产 冷鲜、冰冻分割肉 汽车 冷藏间 5 品 羊下货副产品 汽车 冷藏间 5 羊头 汽车 冷藏间 5 羊尾 汽车 冷藏间 5 羊蹄 汽车 冷藏间 5 羊小肠 汽车 冷藏间 5 大车 冷藏间 5

项目主要能源消耗见表 3.3-5。

表 3.3-5 主要能源消耗一览表

序号	名 称	单位	数量	备注 4/15
12	新鲜水	万 m³/a	10.449	由沙雅县循环经济工业园区集中供水
2	天然气	万 m³/a	108	由沙雅县循环经济工业园区供气管网提供
3	电台	万kW h	83	沙雅县循环经济工业园区供电网提供

HA THE WAR TO SEE THE 3.4 工程生产设备

THE WAR 项目主要生产设备见表 3.4-1。 表 3.4-1 项目主要生产设备 项目主要生产设备一览表

) 		**	1
	Zi	程生产设备			<i>7</i> /1	4/125		z, ² /05	
175	1.3	目主要生产设备见表 3.4-1 3.4-1 项目主要生产设		览表				75	1
100	序号	设备名称	/// _^	规格型号		单位。	数量	1	100
	71, 2	以 田 石 柳	屠雪	产生产线)	平位,			
N. S.		集血槽	1200	槽长约 9.8m,槽宽: 0+1200mm,槽底弧形 E死角,带挡血板,槽	,无卫	台	1	7	
100	_	Line has to the first of the	(300/500mm	<u> </u>	-t K		_	190
	2	血液储存及管路系统	VI.	最低温度控制: 0℃	ز	套	1		I KIL
405	3	扣脚链	<i>1+</i> −±	600);; 41 ==	根	80	4/175	,
	4	宰杀放血输送线 刺 ※ 計 台	传列	速比 262.22,装机功率	ĕ: 4kw	套	1	7	
	5	刺杀站台 一次转挂后腿-换轨站台		1.5m*1m*0.5 2m*1m*0.8	1	台套	1		1
	7	预剥站台 L=3m	100	3m×1m×0.5m	*	套套	2		Jan
V. Klos	8	后腿水平预剥线	住 計	速比 262.22,装机功率	玄. 3kw	套	1		1 Klos
Alm =	9	前腿水平预剥输送线		速比 262.22,装机功率 速比 262.22,装机功率		套	1	Alm-	
X	10-	水平预剥站台 L=9m	1749	9m×3m×0.5m	F: JKW	套	1	XL IV	
	101	羊气动斜拉式扯皮机		9111/0111/0.5111	1/1/	台	111		1
Y	12	羊皮输送机	4.	60×40×2	<u> </u>	台	2	1	4
	13	掏内脏胴体输送线	传动	速比 262.22, 装机功率	. 2 2kw	套	1	-	
	14	落地式红白脏输送线	14-93	装机功率: 2.2kw	-, 2.2KW	套	1	- //	
7,705	15 🛴	羊头蹄检疫输送线		装机功率: 2.2kw	Z	套	1	7/1/5	, "
T	16	羊蹄剪		液压系统	7	套	1,	75	
	17	白脏滑槽		100223456	1	件	1		1
120	18	红脏滑槽		4/6)	件	% 1	1	120
	19	取内脏站台 L=10m	7	10m×1m×0.5m		套	1		Du.
-3/05	20	紫外线消毒输送机		-1905	=/	台	1	7/1/25	7
	21	紫外线消毒器		X.75	7.	套	1 🔏	**	
	22	羊屠宰线中央控制系统			1/11/	套	1		1
11/2	<u>'</u>	1/1/2	散户	屠宰设备			(A)		
	1	集血槽	槽长	约 14m,槽宽:1200m 深:300/500mm	nm,槽	台	1	2/2	J. Kley
X_115	2 🛴	扣脚链		600	,Z	根	80	ZL S	
(-)	3	宰杀放血输送线		装机功率: 3kw		套	11.	175	1
	4	驱动装置	4	变频调速	1	套	1	ľ	<u> </u>
文制: 12.11	X			29	X	Alles I		- Allis	
						>	1	, 7/>	1

						> 		**
						, ⁵		
	5	涨紧装置		气缸式涨紧		套	1	
7/1/5	6 🔏	回转装置		Z	Z	套	4	Z S
(-1)	17	一次转挂后腿-换轨站台		2m×1m×0.8m	1	套	1,	-75
	, K	, ()		主处理区	1/2		,//	
20	1	洗肚机		1350×1050×1300mm	1	台人	(h) 1	
	2	胃容物吹送系统	5	不锈钢收集罐		套	2	
7/11/5	3	胃容物吹送管道		-1905	-1	*	200	-405
	4-1	红脏接收台		4000×900×800	, 4	套	2	*
	115	羊白脏接收台		1000×900×800	1/1/	套	2	1
.///	6	胃接收槽	100	1800×900×800		件	2	.///
A Klos	7	羊肚整理冲洗台	Klo.	2000×1300×780		件	4	1
Z/m_	8	大肠清理台		1800×900×800		台	2	Din-
XL (3)	9 🔏	大肠翻洗池		2000×1000×750	X	台	2	XL,S
	1.10	百叶肚整理台		3000×1300×780		台	2	
	11	包装工作台		1800×900×800	1	台	6	
4/10	12	百叶沥水架车		1400×900×1700		台人	4	
	13	羊头褪毛机				台	1	
-1.7/1.5	14	羊蹄褪毛机		-1/1/5	.7/	台	1	7.405
(A)	15	不锈钢烫池		电加热	7.5	台	2	**
	16	摔干机				台	2	
100	17	燎毛机	100	<i>!</i>		台《	1	
	18	清洗机	Klin			台	2	
4/175	19	浸泡池		2000×1000×780		////	2	4/175
	18.	N. X.	分害	9包装区	, 3	F.Y.		X. W
		分割台		1000×500×800	1	台	30	1
/A.	2	检斤工作台	do.	1800×450×800		台	12	
	3	包装工作台		1800×900×800		台	10	
	4	轨道电子称				台	1	
7/1/25	5	350 锯骨机		895×1000×1760	Z	台	1	Z 1/25
	6	450 锯骨机		1	1	台	1	-75
	7	热缩机		700×720×1300	J/S	台	1	
410	8	真空包装机		DZ-800/2S		台人	2	20
			制	冷设备				
7/175	1 -	速冻制冷系统		405		套	1	405
	2/-	冷藏制冷系统		A. T.	, 4	套	1	**
	1 3	排酸制冷系统			100	套	11	1
100	4	分割制冷系统	10.			套	1	Jn.
	X			30	, 3			
X.	1				1	~	10	Y

	/			
		污水处理站	1/4	
1	机械格栅	B=500,b=6MM,安装角度 75°	台	1
	集水池提升泵	Q=25m ³ /h H=10m, N=1.5KW	台	2
2	NaOH 投加器	融药投加一体机	台	1
3	微滤机	ф 1000mm,L1500mm	台	(₀) 1
4	调节池提升泵	Q=25m ³ /h H=10m, N=1.5KW	台	2
	气浮机	配套絮凝反应区	套	1
5 %	PAC 加药装置	融药储药分区	套	1
	PAM 加药装置	融药储药分区	套	1
6	缺氧池		套	1
7	接触氧化池	100	套	1
8	二沉池		套	1
9	二氧化氯发生器	电解法次氯酸钠发生器	套	1
10	污泥处理	, * , *	套	1
	5 6 7 8 9	集水池提升泵 NaOH 投加器 3 微滤机 4 调节池提升泵 气浮机 5 PAC 加药装置 PAM 加药装置 6 缺氧池 7 接触氧化池 8 二沉池 9 二氧化氯发生器	1 机械格栅 B=500,b=6MM,安装角度 75° 集水池提升泵 Q=25m³/h H=10m, N=1.5KW NaOH 投加器 融药投加一体机 3 微滤机 Φ 1000mm, L1500mm 4 调节池提升泵 Q=25m³/h H=10m, N=1.5KW 有浮机 配套絮凝反应区 PAC 加药装置 融药储药分区 PAM 加药装置 融药储药分区 6 缺氧池 7 接触氧化池 8 二沉池 9 二氧化氯发生器	1 机械格栅 B=500,b=6MM,安装角度 75° 台 2 集水池提升泵 Q=25m³/h H=10m, N=1.5KW 台 3 微滤机 Φ 1000mm, L1500mm 台 4 调节池提升泵 Q=25m³/h H=10m, N=1.5KW 台 5 存列机 配套絮凝反应区 套 PAC 加药装置 融药储药分区 套 PAM 加药装置 融药储药分区 套 6 缺氧池 套 7 接触氧化池 套 9 二氧化氯发生器 电解法次氯酸钠发生器 套

3.5 工艺流程及排污节点

3.5.1 屠宰工艺流程及排污节点

(1) 进场检疫

本项目屠宰羊依托社会羊收购商进行收购,主要来自于养殖场及羊市场。羊进场卸车前,屠宰场的工作人员必须先对羊的运输车辆进行消毒,以防止运输车辆携带病菌进入屠宰场,并进行动物及动物产品运载工具消毒证明检查。

按照《牛羊屠宰产品品质检验规程》(GB18393-2001)要求,在检疫部门监督下进行健康检疫,进场羊应取得产地动物防疫监督机构开具的检疫合格证,确保进场羊健康无异常,方可准予进场卸车,暂时分类饲养于静养待宰羊舍。对于未取得检疫合格证的羊禁止进场卸车,对于病、死羊应按照《病死及病害动物无害化处理技术规范》(农医发[2017]25号)要求,在检验检疫部门监督下进行无害化处理。

此工序主要污染源为运输车辆消毒产生的废水 W1,进场检疫检出的不合格 肉羊 S1。

(2) 宰前检疫、淋洗

健康羊暂时饲养于待宰圈羊舍,一般饲养时间不少于 12h,期间禁食,并进行宰前观察、检疫。如出现受伤且健康的羊,送入急宰车间,按照标准屠宰工序进行急宰;如出现病死羊,在检疫部门监督下进行隔离,并按照《病死及病害动物无害化处理技术规范》(农医发[2017]25 号)要求进行无害化处置,同时做好

厂内消毒、卫生防护等工作。

健康待宰羊进入屠宰工序前,经通道进入淋洗间,通过淋洗将羊表体沾有的粪便、灰尘等附着物进行清洗,确保屠宰羊表体清洁,减少屠宰过程羊表体附着物对胴体的污染,淋浴水温根据季节的变化进行适当的调整,淋浴时间 5min。

此工序主要污染源为待宰圈产生的含臭废气 G1, 待宰圈冲洗废水 W2、待宰羊淋洗废水 W3, 宰前检疫检出的不合格肉羊 S2, 羊群在待宰圈产生的羊粪 S3。

(3) 宰杀放血

经淋洗后的羊进入屠宰车间放血输送线进行宰杀,屠宰过程在轨道中进行直至完成整个屠宰处理,不得与地面接触。宰杀放血前采用自动麻电机将羊击昏,被电击昏后扣紧羊小右后小腿,匀速提升,使羊后腿接近输送机轨道,然后挂至轨道链钩上,迅速将羊挂起,从羊喉部下刀,横切断食管、气管和血管,采用伊斯兰"断三管"的屠宰方法,之后沥血 5-8min,刺杀放血刀应每次消毒,轮换使用。下方安装有放血槽,羊血经放血槽进入集血池,凝固后作为副产品外售。放血后的羊再次采用麻电机进行脉冲电压刺激,电压 25-80V,用以放松肌肉,加速羊肉排酸过程,提高羊肉嫩度,如有少量散户羊只进场则在散户屠宰去进行前期宰杀处理。

沥血完毕后进行头脚检验以免患水泡病、口蹄疫、炭疽、结核等疾病的羊进 入后续工序,检验合格的羊屠体经立式洗羊机清洗,清洗干净后进入后续工序, 不合格羊屠体送无害化处理设备进行处理。

此工序主要的污染源为刺杀放血臭气 G2, 放血后清洗废水 W4, 不合格羊屠体 S4。

(4) 剥皮、去头

经宰杀放血的羊屠体由高轨挂至低轨,通过电动控制箱切刀切除羊头。羊头进入羊头处理区,通过燎毛机对羊头进行去毛处理,去毛后的羊头经清洗、整理、包装等处理工序后,作为副产品入冷藏库待售。

经切除羊头的羊屠体进入剥皮工序,先由机械剥前小腿皮,进入高轨后剥悬空后退皮,再用电动葫芦将羊从高轨取出,用中轨的滑轮钩钩住已剥皮侧羊腿,通过电动葫芦将羊挂到中轨,在中轨进行另一侧剥皮处理,最后剥脱臀皮及尾皮,完成高位剥皮。剥脱后的羊皮毛通过扯皮机进行插刀修整皮张,防止扯坏皮张,剥脱的皮张完整度较高,作为副产品外售,不需进行脱毛处理。

此工序主要的污染源为燎毛废气 G3, 羊头清洗废水 W5, 设备运行产生的噪声 N。

(5) 剖腹、取内脏

通过切割刀对完成剥皮处理后的羊屠体进行剖腹开膛,取出红白内脏,并对红白内脏进行分离、加工清洗,同步进行检验检疫,经检疫合格的红白内脏作为副产品外售。

①红内脏处理

红内脏主要包括心、肝、肺等红色内脏,红内脏经检疫合格后统一收集送至 红内脏处理间。根据建设方提供资料,项目通过人工对红内脏进行分拣,将其按 类分拣收集,分拣同事对内脏锁带肉屑进行剔除,肉屑经统一收集后外售,分拣 后的红内脏进行清洗、整理包装后入冷库待售。

②白内脏处理 1

白内脏主要包括大肠、小肠、羊肚等白色内脏,该部分内脏主要为羊的消化 系统,其中包裹大量未消化物。白内脏经检疫合格后统一收集送至白内脏处理间, 人工对其进行分拣收集,并对其中胃、肠容物进行去除,项目设置专门的清洗剂 对白内脏进行清洗,清洗后的白内脏分类整理包装入冷库待售。

此工序主要污染源为内脏处理过程中产生含臭废气 G4,清洗内脏产生的内脏清洗废水 W6,检疫产生的不合格产品 S5,胃肠容物 S6。

(6) 修整清洗

对取出内脏的屠体进行修整,修整范围包括去除肾脏周围脂肪、去除淤血及 血凝块、割除体腔内残留的零碎块及脂肪,割除胴体表面污垢后冲淋洗去残留血渍、骨渣、毛等污物。

此工序主要的污染源为修整过程中产生的含臭废气 G5, 修整清洗废水 W7, 修整去除的残留物 S7。

(7) 去蹄尾、油脂

将羊蹄、羊尾以及外挂油脂与胴体分离,羊蹄、羊尾经燎毛机去毛处理后清 洗后作为副产品入冷库待售,油脂集中收集后作为副产品入冷库待售。

此工序主要的污染源为燎毛废气 G6,清洗产生的废水 W8。

(8) 冷却排酸

经检验检疫合格的羊胴体送至排酸间进行排酸处理。羊被屠宰过程中,由于 精神紧张和电击刺激,体温会升高,肉质中会发生明显的生物化学变化,屠宰后 羊正常新陈代谢和血液供应停止时,肌肉中所贮存的肌糖原会被降解成乳酸,影响肉的品质及口感需进行排酸处理。排酸间冷却温度控制在 0-4°C,排酸时间控制在 12-24h,排酸的目的是使大多数微生物的生长繁殖受到抑制,肉毒梭菌和金黄色葡萄球菌等不再分泌毒素,肉中酶发生作用,将部分蛋白质分解成氨基酸,从而减少了有害物质的含量,确保了肉类的安全卫生;与冷冻肉相比,排酸肉由于经历了较为充分的解僵过程,其肉质柔软有弹性、好熟易烂、口感细腻、味道鲜美,且营养价值较高。排酸后的羊胴体送分割间。

此工序主要污染源为排酸间异味 G7。

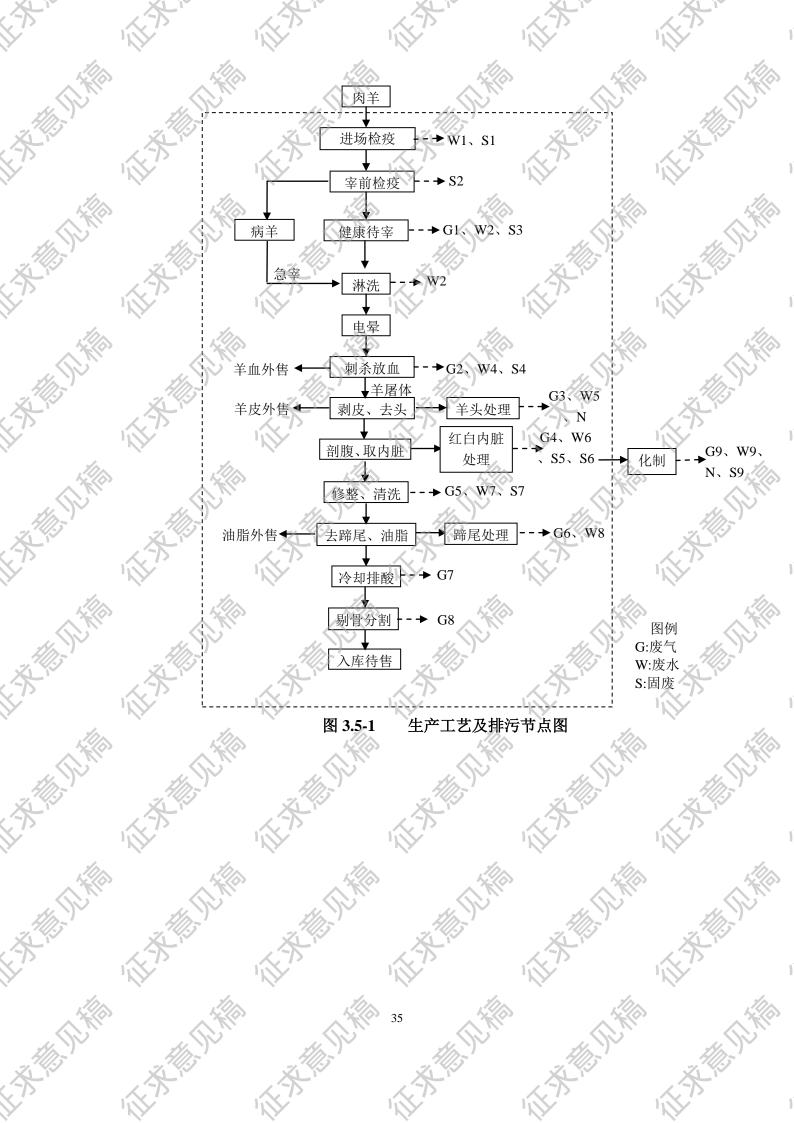
(9) 剔骨、分割

对完成排酸处理的羊胴体进行剔骨、分割,根据不同部位对鲜肉进行分割、 分类、定级,包装后入冷库待售。剔除的骨头作为副产品入冷库待售,分割间温 度控制在 15℃一下。

此工序主要的污染源为剔骨分割异味 G8。

(10) 入库待售

经剔骨、分割的羊肉按照分类、定级分别储存于冷藏间内待售,以保证肉品新鲜,防治细菌滋生、冷藏间温度一般控制在-15℃左右。


(11) 无害化处理

肉羊在进场及屠宰过程中,经检查发现病死羊或不合格产品,采取高温化制的方式进行无害化处理,该工艺通过高温、杀菌及生物降解三个步骤,将病死羊或不合格产品转化为无害有机肥料。

化制是利用干化机在一个密闭的高压夹层容器内,通过在夹层通入高温循环热源对病死动物进行高温灭菌处理,高温蒸汽不接触化制的尸肉,尸肉经破碎机破碎细化处理至 5cm 的块状物后,进入高温高压熟化灭菌工序,处理物料中心温度 $\geq 140^{\circ}$ 、压力 $\geq 0.4MPa$ (绝对压力),时间 $\geq 4h$,物料经化制处理后可制成有机肥料,可最大限度地实现羊尸体的资源化利用,变废为宝。

本工序污染源主要污染源为无害化处理过程中产生的废气 G9, 化制产生的废水 W9, 设备运行产生的噪声 N, 化制后产物 S8。

生产工艺及排污节点图见图 3.5-1。

生猪屠宰加工工艺流程排污节点一览表

		**			**		1
		表 3.5	5-1 生猪屠宰加工	一 中海 积 1	非法书	5点一览表	>
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	类	10,0	排污节点	主要	排放	防治措施	
1	别	/	11112 1277	污染物	规律	1/2	1
		G1	待宰圈	NH ₃ , H ₂ S,	连续	增加待宰圈清洗次数,增加羊粪等废 弃物的清理频次,保证通风	>
		G2	刺杀放血	臭气浓度	间断		
7/1/35		G3、	燎毛	颗粒物、	间断	5' 2,45'	
7		G6	原 七	SO ₂ , NOx		增加屠宰车间的通风次数,及时清理屠宰	1
	1	G4	内脏处理	'\\\	间断	车间内胃肠容物等废弃物	- 1
196		G5	屠体修整	NH_3 , H_2S ,	间断	于PF1日加在10分及开切	>
	废	G7	排酸	臭气浓度	间断	OH OH	
405	气	G8	剔骨分割		间断		
, X-1				NH_3 , H_2S ,	*		
	1	G9	无害化废气	臭气浓度、	连续	生物滤池系统+15m 高排气筒	1
			.///>	非甲烷总烃			
A STATE OF THE STA		G10	锅炉烟气	颗粒物、 SO ₂ 、NOx	间断	低氮燃烧器+15m 高排气筒	>
7,7(135		7.70			7,70	负压收集+生物滤池系统+15m 排气	
		G11	污水处理站	NH ₃ 、H ₂ S、 臭气浓度	连续	筒 (1 套); 污水池加盖、污泥及时清 运、周边绿化	1
JA.		W1	进场车辆清洗废水	1000	间断	100 100 100	
		W2	待宰圈冲洗废水	Kley	间断	(1) 1/40, (1) 1/40, (1) 1/40,	
4/11=		W3	待宰羊淋浴废水	pH、COD、	间断	4/112	
X		W4	7 - 7. 7.7	BOD_5 SS.	间断		
	1	W5	X . 17		间断	厂区污水	1
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		W6	内脏清洗废水	物油、大肠	间断	处理站 沙雅县污水处理 / / / / / / / / / / / / / / / / / / /	
14/00	废	W7	修整清洗废水	菌群	间断		>
1/4	水	W8	蹄尾清洗废水	No.	-/>		
Z 7/15		W9	车间清洗废水		间断	5 2 25	
		W10	生活污水	COD、氨氮、 SS	间断	化粪池	1
100		W10	软水制备排水	SS	间断	泼洒抑尘	
W. Klos		W10	循环水系统排水	SS	间断	泼洒抑尘)
Alm =		S1	不合格羊(进场检		间断	2/10-1	
X	固。	S2	不合格羊(宰前检		间断	无害化处理	
	废	S3	待宰圈粪便	100	间断	外售作肥料加工	1
√z	1000	S4	不合格羊(屠体沥血)	 后检疫)	间断	无害化处理	
		~.	1 14 1 (7617 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	36	1.44		>
X III					ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ		
		7		1/2	7		1

	S5/	不合格产品	间断	
	S6	胃肠容物 (羊粪)	间断	外售作肥料加工
	S 7	修整碎骨、碎肉	间断	集中收集外售
.//>	S 8	化制后产物	间断	外售作肥料加工
	S 9	污水处理站污泥	间断	外售作肥料加工
	S10	软水制备废树脂	间断	由环卫部门统一处理
	S11	生活垃圾	间断	环卫部门统一处理

3.5.2 活羊及屠体检疫

- (1)活羊检疫
- ①检查免疫证、免疫耳标
- ②检查产地检疫合格证明
- ③检查运载工具消毒证明书.

项目活羊检疫方法:通过感官目测,剔除一些症状比较明显的可疑病羊。一般应用群体检查和个体检查相结合的方法进行检疫。群体检查主要通过观察动物的精神状况、呼吸状况、运动情况、饮食情况,看其是否正常;个体检查主要通过看动物的体表现象、排泄物及各种动作表现,听取动物体内发出的声音,用手触摸动物各部位、测试动物体温,看其是否正常。

(2)羊屠体检疫

羊屠体检验一般分成头部检验、初检(皮肤、肠系膜淋巴结和脾脏检验)、内脏检验、寄生虫检验、胴体复检。

头蹄部检疫:观察头部表面有无明显病变情况,口腔内有无水疱、溃疡等病变,在观察蹄部有无肿胀等。

初检:通过视检、触检法将结果综合判定。视检通常判定皮肤的病理变化: 触检则是剖检判定肠系膜淋巴结和手触脾脏,视其组织结构的变化。

内脏检查:观察肺脏外形、色泽、大小;观察心脏形态、大小、色泽、心外膜,在心室肌肉处切一小口,检查有无囊虫;观察肝脏形态、触摸硬度与弹性、看有无淤血、槟榔肝。

寄生虫检疫:取生羊左右隔膜肌肉 50g,制成压片,检验肌纤维组织,放在显微镜下观察是否有悬毛虫与住肉孢子虫。

胴体检验:首先判断放血情况,再观察皮肤、脂肪、胸腹腔、关节是否有传染病而引起坏死、肿胀、炎症等。肌肉检验,检查股部内侧肌、深腰肌肋骨两侧小血管有无血醋瘤和肌断面湿润,以判断放血程度好坏;观察脊椎骨纵面色泽和

畸形等病理变化 有无出血、

项目检验项目检疫以视检为主,仅寄生虫检疫需制成载玻压片以显微镜检 疫,项目检验不涉及药品使用。

3.6 物料平衡

本项目物料平衡见表 3.6-1。

表 3.6-1 本项目物料平衡一览表

	投入	(1)		7	^左 出	
序号	名称	数量	序号	名称	数量	备注
1	活羊	12000	4.	生鲜羊肉	6000	主产品
			2	羊血	355	
7.4	1 55	-,44	3	羊头 //	480	4(1)5
45	•	45	4	羊皮	720	副产品
			5	红白内脏	1350	削厂前
	100		6//	羊蹄、尾、油脂	420	ZIA.
			7	羊骨	1860	
Z,	(n)	4//	8	碎骨、碎肉	206	外售作饲料加工
X		XL	9	羊粪	603	外售作肥料加工
			10	不合格羊及产品	6	无害化处理
Î	合计	12000	do.	合计	12000	

3.7 公用工程

3.7.1 供电

项目用电由沙雅县循环经济工业园区供电网供电 台,年用电量为342万kWh。

3.7.2 供热

项目厂区设锅炉房1座,设置6t/h燃天然气锅炉1台,用于厂区生产用热及 生活用热。

3.7.3 供气

项目锅炉用天然气由沙雅县循环经济工业园区供气管网提供,年用气量 108

3.7.4 制冷

项目采取氟利昂制冷系统,包括速冻制冷系统、冷藏制冷系统、排酸制冷系统、分割制冷系统,制冷剂采用 R134A,总制冷负荷为 2650kW。

3.7.5 给排水

(1)给水

本项目新鲜水采用沙雅县循环经济工业园区集中供水,可以满足项目需求。项目用水包括屠宰加工用水、车辆清洗用水、检验检疫用水、锅炉系统用水、循环水系统用水及生活用水,总用水量为 568.3m³/d,其中新鲜水量为 348.3m³/d,循环水量为 220m³/d。

①屠宰加工用水

屠宰加工用水包括待宰圈及待宰羊冲洗用水、屠宰过程清洗用水(放血后清洗、羊头清洗、内脏清洗、修整清洗、蹄尾清洗)、车间清洗用水,项目屠宰采用标准化自动屠宰生产线,根据《新疆维吾尔自治区工业用水定额》,屠宰及肉类蛋类加工业中羊的用水定额为 0.3m³/只,本项目屠宰量为 1000 头/d,屠宰加工用水量为 300m³/d。

②车辆清洗用水

项目进场车辆需进行清洗消毒,清洗用水量约为 2m³/d。

③检疫检验用水

项目设置检疫室对屠体及相关产品进行检疫, 检疫室用水量约为 0.5 m³/d。

④锅炉系统用水

本项目锅炉需补充软水,软水由设备自带设备提供,补水量为 4m³/d,循环水量为 200m³/d。

⑤循环水系统用水

本项目制冷系统中需冷却循环水,均为设备冷却水,不直接与物料及冷媒接触,循环使用,循环量为 20m³/d,补水量为 0.4m³/d。

⑥待宰羊饮用水

本项目屠宰肉羊 1000 只/d,入场后饲养周期按 1 天计,单只羊饮用水量为 35L/只,则待宰羊饮用水量为 $35m^3/d$ 。

⑦职工生活用水

项目劳动定员80人,生活用水按照80L/人d计,用水量为6.4m³/d。

(3) 排水

项目废水包括屠宰废水、车辆清洗废水、检疫检验废水、锅炉系统排水、循 环水系统排水及生活污水。

①屠宰废水

本项目屠宰量为 1000 头/d, 根据《排污许可证申请与核发技术规范 食品加工一屠宰及肉类加工工业》(HJ860.3-2018)中附录 C 中表 C.1 和 C.2, 工 业废水的产物系数为 7.166t/t-活屠重, 单头肉羊按 40kg 计, 则本项目的活屠重 为 40t/d,屠宰加工废水产生量为 286.6t/d(m³/d),经厂区污水处理站处理后排 至沙雅县污水处理厂处理。

②车辆清洗废水

项目车辆清洗废水产生量为 2m³/d, 经厂区污水处理站处理后排至沙雅县污 水处理厂处理。

③检疫检验废水

项目检疫室用水量约为 0.5m³/d, 经厂区污水处理站处理后排至沙雅县污水 处理厂处理。

④锅炉系统排水

本项目锅炉系统排水量为 1m3/d, 用于厂区泼洒抑尘。

⑤循环水系统排水

本项目循环水系统排水量为 0.1 m³/d, 用于厂区泼洒抑尘。

⑥生活污水

项目生活污水产生量按用水量的 80%计,产生量为 5.1m³/d, 经化粪池处理 后排至厂区污水处理站,经厂区污水处理站处理后排至沙雅县污水处理厂处理。

项目水平衡情况见表 3.7-1, 水平衡图见图 3.7-1。

THE PARTY OF THE P

		7	N. A. T.		THE STATE OF THE S		10	**	1		1
		表 3.7-1 项	→ A LH. Le		·			as no			
3/1/35	序号	表 3.7-1 项 用水工序	目给排水 总用水量	情况一览 新鲜水量	表 循环水量	损耗量	排放量	单位;	m³/d 汝去向		
7	71, 2	屠宰加工	300	300	加加 1	13.4	286.6		区 本 円	40	
	2	车辆清洗	2	2	15		2		空)内75小2 里站处理后		
200	3	检疫检验	0.5	0.5		,20	0.5	1 1	入沙雅县污		1900
H. A. Harrison	4	职工生活	6.4	6.4		1.3	5.1	化粪池	处理厂		
4/1/2	5	锅炉系统	204	4	200	3	1	Z/m	ult vari kiri els	4/1	>-)~
XL	6	循环水系统	20.4	0.4	20	0.3	0.1	XIXXX	发洒抑尘	_XLY	
	7	待宰羊饮用	35	35		35	71	<i>7</i> >	15		1
7	N.	合计	568.3	348.3	220	53	295.3				. <u> </u>
	单位	产品基准排水量 (m³/头)					0.295		17/0		
400.5		401.5	4//	25-1	3	105		4/175	7	4/1	3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A Y	N. A.		N. A.	, i		**	1		1
-/a	V	d.	7	4	N	J.	\	7	42	N. P.	Ja
			<u>D</u>		2			Hn-		Do.	
	/			5	A. A.			7			
			1		1///		1//		1		
			A		,			4/2		N	
7/05		7/35		35"	17/	(15)		***************************************	* [~]	A THE	7
		7	1				1/2	Y	11		
	2		刘		Ž.			X. 405		X	
())		/>/						, 7/> Y	1		1
	N		V		V.A.			7		N. Y.	
Z Alis	3	2/15	7		Ž,			Z 4/125		3/1/3	
A. P.		7				•	10	75	اً ا	N. A.	1
			۵		41						
	/.				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(1)5		7/05			
	1	7					1		1	W.	1

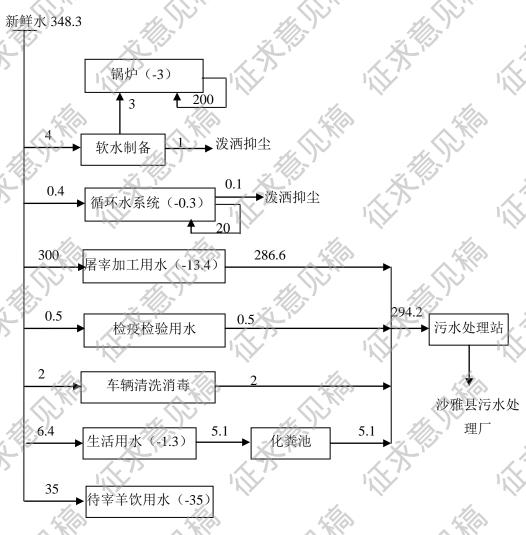


图 3.7-1 项目给排水平衡图 单位: m³/d

3.8 污染源分析及污染防治措施

3.8.1 废气

项目运营后外排的废气分为有组织废气和无组织废气,有组织废气为锅炉烟气、化制废气、污水处理站废气,无组织废气为生产区(待宰圈、屠宰车间等)产生的恶臭气体、污水处理站未被收集的恶臭气体。

(1)锅炉烟气

本项目设置 1 台 6t/h 燃气锅炉,燃料为天然气,燃气量为 450m³/h,年工作 2400h,经低氮燃烧后烟气通过 1 根 15m 高排气筒(P1)排放。

参照《污染源源强核算技术指南 锅炉》(HJ991-2018)及《排污许可申请与核发技术规范 锅炉》(HJ953-2018)相关标准,燃气锅炉参见全国污染源普查工业污染源普查数据,根据《工业污染源产排污系数手册》(2021 年版)中"4430工业锅炉(热力生产和供应行业)产物系数表-燃气工业锅炉"的内容进行分析,

项目锅炉采用低氮燃烧器,通过部分燃烧烟气循环燃烧,降低燃烧温度,减少NO_X产生量,结合项目情况,本项目锅炉燃气产排情况见表 3.8-1。

表 3.8-1 锅炉燃烧烟气产排情况一览表

	.//			产生	4	>=: >h (7÷	排放			
工序	烟气量	污染物	产生浓度	产生速率	产生量	污染防 治措施	排放浓度	排放速	排放量	
2	(////		(mg/m^3)	(kg/h)	(t/a)	石山田川田	(mg/m^3)	率(kg/h)	(t/a)	
X		SO_2	37.1	0.18	0.432	低氮燃	37.1	0.18	0.432	
AD VA	4850m ³ /h	NO_X	64.7	0.32	0.753	烧+15m	64.7	0.32	0.753	
锅炉	4850m /h	颗粒物	10	0.05	0.116	排气筒 P1	10	0.05	0.116	

由上表可知,本项目燃气锅炉废气排放污染物均满足《锅炉大气污染物排放标准》(GB13271-2014)表3中燃气锅炉排放限值要求。

(2) 化制废气

项目采用化制设备进行不合格肉羊及产品进行无害化处理,不合格肉羊及产品在该设备粉碎及无害化处理过程中会产生恶臭气体,污染物主要为非甲烷总烃、H₂S、NH₃、臭气浓度,该设备为整体密闭一体化设备,产生的废气由自带的除臭装置处理后由 1 根 15m 高排气筒排放。项目无害化处理设备废气量为3000m³/h; 经类比,NH₃产生量和产生浓度分别为0.012kg/h和4mg/m³, H₂S产生量和产生浓度分别为0.0048kg/h和1.6mg/m³, 非甲烷总烃产生量产生浓度分别为0.03kg/h和10mg/m³, 臭气浓度为4000(无量纲),除臭装置净化效率按90%计,则NH₃排放量和排放浓度分别为0.0012kg/h和0.4mg/m³, H₂S 排放量和排放浓度分别为0.0005kg/h和0.16mg/m³,臭气浓度为1500(无量纲),满足《恶臭污染物排放标准》(GB14554-93)中的二级新建标准要求,非甲烷总烃排放量和排放浓度为0.003kg/h和1mg/m³,满足《大气污染物综合排放标准》(GB16297-1996)表2标准限值要求。

表 3.8-2 化制废气产排情况一览表

	15	1 = 1 4/2	24 47 477	,,,,,	7 1				
		10		产生		○二次h.17~2公		排放	10
工序	废气量	污染物	产生浓度	产生速率	产生量	污染防治 措施	排放浓度	排放速	排放量
		4(0)	(mg/m^3)	(kg/h)	(t/a)	1日 /地	(mg/m^3)	率(kg/h)	(t/a)
	Z/m-	H_2S	1.6	0.0048	0.012	the diamonts on be	0.16	0.0005	0.001
化制	3000	NH_3	4	0.012	0.029	生物滤池	0.4	0.0012	0.003
机	m ³ /h	臭气浓度	400	0(无量纲		+15m 排 气筒 P2	1500	(无量约	図)
		非甲烷总烃	10	0.03	0.072	一、同 P2	1	0.003	0.007

(3) 污水处理站废气

污水处理站废气污染源主要是污水处理过程散发出来的恶臭气体,主要为格栅间、调节池、隔油池、A/0 池、污泥浓缩池、污泥脱水间等,污水处理站产生的恶臭污染物以 NH_3 和 H_2S 为主。参考美国EPA对城市污水处理厂恶臭污染物产生情况的研究,每处理 1g 的 BOD_5 ,可产生 0.0031g 的 NH_3 和 0.00012g 的 H_2S 。

本项目 BOD_5 处理量为 68.709t/a,对应 NH_3 、 H_2S 产生量为污水处理站加盖密闭,对产生的恶臭气体集中收集后处理,收集效率按 95% 计,收集后废气引至生物滤池处理后,处理效率为 90%,处理后的废气通过 15m 高排气筒排放,排放废气中 H_2S 排放速率为 0.003kg/h, NH_3 排放速率为 0.008kg/h,臭气浓度为 1800(无量纲),满足《恶臭污染物排放标准》GB14554-93 中的二级新建标准要求。

1	J.0-J	13/15/	C 生 11/X	או ארו וא	70 2	E11			_
		N. C.	<i>y</i>	产生		运油压盗		排放	10
工序	烟气量	污染物	产生浓度	产生速率	产生量	污染防治 措施	排放浓度	排放速	排放量
			(mg/m^3)	(kg/h)	(t/a)	1日/吨	(mg/m^3)	率(kg/h)	(t/a)
		H_2S	0.7	0.003	0.008	池体密闭	0.1	0.0003	0.008
污水处	5000	NH_3	-17.7	0.089	0.213	+生物滤	1.6	0.008	0.213
理站	m ³ /h	自与沙克	5000	/ 工具畑	(F)	池+15m	1000	(工具)	a .
		臭气浓度	5000	(无量纲		排气筒 P3	1800	(无量组	4)

表 3.8-3 污水处理站废气产排情况一览表

(4) 生产区无组织废气

项目生产区恶臭主要包括待宰圈产生的恶臭及屠宰车间产生的恶臭以及少量燎毛废气,根据建设单位提供资料,项目屠宰采用自动化生产线,人工参与量较传统屠宰工艺少,主要的恶臭产生源为待宰间羊的粪尿发酵、含硫蛋白分解产生的恶臭以及屠宰车间中羊的湿皮、血、肠胃容物和粪尿等臭气混杂在一起产生的刺鼻腥臭味,以及燎毛处理会产生的少量无组织废气,因此生产区无组织废气污染物主要为 H_2S 、 NH_3 、臭气浓度、颗粒物、 SO_2 、 NO_X 。

为减少恶臭对周围环境的影响,结合《排污许可证申请与核发技术规范 农副食品加工工业—屠宰及肉类加工工业》(HJ860.3-2018)中相关要求,要求建设单位增加对待宰圈清洗次数,增加羊粪等废弃物的清理频次,保证待宰圈通风,同时增加屠宰车间的通风次数,及时清理屠宰车间内胃肠容物等废弃物,最大限度减少本项目生产区恶臭排放,采取以上措施后,屠宰车间 NH₃ 排放速率为 0.012kg/h, H_2 S 排放速率为 0.0015kg/h,臭气浓度<20(无量纲),待宰圈 NH₃ 排放速率为 0.005kg/h, H_2 S 排放速率为 0.002kg/h,臭气浓度<20(无量纲),满

足《恶臭污染物排放标准》(GB14551-93)表1中标准要求。

外" 原毛处理工序会产生少量燃烧废气,通过采取燎毛后增加清洗处理,增加通欠数等措施后,可有效减少污染物产生量,类比同类型项目,燎毛后产生的 50 文速率为 0.01kg/h, NO_x 排放速率为 0.000 风次数等措施后,可有效减少污染物产生量,类比同类型项目,燎毛后产生的SO₂ 排放速率为 0.01kg/h, NO_X 排放速率为 0.006kg/h,颗粒物排放速率为 0.01kg/h, 满足《大气污染物综合排放标准》(GB 16297-1996)表2无组织排放限值限值要

N. A.

THE TOTAL PROPERTY OF THE PARTY OF THE PARTY

H.A.

THE TOTAL PROPERTY OF THE PARTY OF THE PARTY

本项目污水处理站污水处理过程中会产生恶臭,经有组织收集后还有少量恶 臭以无组织逸散的方式排放,本项目采取对水处理池体、污泥浓缩池等加盖密闭 的措施,加强有组织收集,污泥及时清运出厂,并在污水处理站周围加强绿化, 减轻污水处理站无组织排放对周围环境的影响,采取以上措施后 NH3 排放速率

项目废气污染物排放情况

3. Allis		-,4/05		>													>
7 105	1K				35	THE STATE OF THE S		NA A		7				1			
1/2	ā	麦 3.8-4	项目	废气污染物	勿排放情况		17>- 11		1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10	>	- SE 47 . LI			1/2/6	>
4/125	工序	装置	污染源	污染物	核第一方法	污染 ² 废气量 (m ³ /h)	物产生 浓度 mg/m³	速率 kg/h	处理措施 工艺	效 率%	核算 方法	废气量 m ³ /h	亏染物排 浓度 mg/m³	F放情况 速率 kg/h	排放量 t/a	排放时 间(h/a)	40
N. T.	锅炉	锅炉烟气	P1	SO ₂ NO _X	物料衡算 类比法	4850	37.1 64.7	0.18 0.32	低氮燃烧+15m 排 气筒 P1	7	系数 计算	4850	37.1 64.7	0.18	0.432	2400	
			4/6	颗粒物 H ₂ S NH ₃	类比法 类比法 类比法		10 1.6 4	0.05 0.0048 0.012	生物滤池+15m 排		系数		10 0.16 0.4	0.05 0.0005 0.0012	0.116 0.001 0.003		>
7/1/25	化制	化制废气	P2	臭气浓度 非甲烷总烃	类比法 类比法	3000	10	(无量纲) 0.03	气筒 P2	90	计算	3000	7.1	500(无量纲 0.03	0.007	2400	Z.
	污水 处理 站	污水处理 站废气	P3	H ₂ S NH ₃ 臭气浓度	系数法 系数法 类比法	5000	5.9 50.0 5000	0.04 0.31 (无量纲)	池体密闭+生物滤 池+15m 排气筒 P3	1 90	系数 计算	5000	1.6	0.0003 0.008 800(无量纲	0.008	2400	
		待宰		H ₂ S NH ₃	类比法类比法			0.002	增加待宰圈清洗次数,增加羊粪等废 奔物的清理频次,	É	类比法 类比法			0.002	0.005		S
X 135		生产—— 区无	-	臭气浓度 H ₂ S	类比法 类比法	3		<20(无量纲) 0.006	保证通风	*	类比法 类比法		3,24/3 T>-	<20(无量纲 0.006	0.014		
N.		组织 废气 屠宰 车间	200	NH ₃ 臭气浓度 TSP	类比法 类比法 类比法		 	<20(无量纲)	及时清理屠宰车间 内胃肠容物等废弃 物;增加清洗处理,		类比法 类比法 类比法	 		0.015 <20(无量纲 0.01	0.036	2400	1//
Z. 7/11.5	织	7/17-5		SO ₂	类比法 类比法	3	<u>-</u>	0.01	增加通风次数	_4/	类比法 类比法		4//	0.01	0.024 0.014		40
	1K	污水处理 站无组织 废气		H ₂ S NH ₃ 臭气浓度	系数法 系数法 类比法				池体密闭,污泥及 时清运,加强设备 管理		系数法 系数法 类比法			0.0003 0.009 <20(无量纲	0.0007		
		112 V		/ VINIX	XIIIA			46		2/3			L	200			S)
	1K	**************************************			5	THE REAL PROPERTY.		N. A. S.		XX.	(5)				X 7/13		

(6) 废气污染物排放量核算

HA THE WAR THE WAY TO SEE THE WAY TH ①有组织排放量核算

THE THE PARTY OF T 表 3.8-5 本项目大气污染物有组织排放量核算表

THE TOTAL PROPERTY OF THE PARTY OF THE PARTY

	①有组织排放量核	算一	X	茶		**
1	有组织排放量见表	3.8-5。	1		1	1
200	表 3.8-5 本项目	1大气污染物	有组织排放量构	亥算表		100
A River	序号 排放口编号	污染物	核算排放浓度/	核算排放速率/	核算年排放量/	
405	万分 117以口拥分	行朱初	(mg/m^3)	(kg/h)	(t/a)	-405
	XLIV	XL -	一般排放口	X	, iv	7
	1	SO_2	37.1	0.18	0.432	1
.///	1 锅炉烟气 P1	NO _x	64.7	0.32	0.753	.///
	7/0	颗粒物	10	0.05	0.116	
Zin-	Z/m_	H ₂ S	0.16	0.0005	0.001	Zin-
XL (S)	2 化制废气 P2	NH ₃	0.4	0.0012	0.003	XL IV
	Z Pulpa//X (12	臭气浓度		1500(无量纲)		
, <u> </u>	.//	非甲烷总烃	1	0.03	0.007	
4/0	污水处理站废气	H ₂ S	0.1	0.0003	0.008	
	3 P3	NH ₃	1.6	0.008	0.213	
7/1/25	7/13	臭气浓度	3/05	1800(无量纲)	<u> </u>	7.705
		-	一般排放口	(4)	.1	**
		Ý.	SO_2	1	0.432	1
100	, III.	.70	NO _x	10,	0.753	, to
V. Klos	Willey	N/A	颗粒物	Klo,	0.116	W. Kley
Z/m=	一般排放口合计	1/0	非甲烷总烃	2	0.007	Z/m=
XL	XL (2)	XLY	H ₂ S	لنكر	0.009	XL P
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NH ₃		0.216	//>
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\(\lambda\)		臭气浓度			
14/0	4/6	有约	21. 组织排放总计	1/2/20	4/6	
			SO_2	<i>1</i> 0.,	0.432	4 (1)
7,405	7/05	2,403	NO _x	<u> </u>	0.753	7/05
(F)	人币人	7	颗粒物	13	0.116	75
	有组织排放总计	/	非甲烷总烃		0.007	1
190	400	./0	H_2S	4	0.009	190
			NH ₃	/ Kly	0.216	
4/05	4/25	4/12	臭气浓度	3	(<u>)</u>	Z. Alis
X Y	②无组织排放量核	算	XX	茶	, iv	X "
	无组织排放量见表	3.8-6.			18	1
In.	Jn.	.//	×	.tn.	.///	.In.
A Kilos			47			1
Zin-)	Ha V	2/0-	Z/m-) 2	//n_)\`	
7. 1.5	XL.	XLIS	XL,5	ŽL.		X
Y	, //	7	1//	1/2	1/2	7

表 3.8-6 项目污染物无组织排放量核算表

					**	
	表 3.8-6	项目污染物	无组织排放量核	算表	40-	
	序排放口	产污环节污染物	主要污染防治措施	国家或地方污染物 标准名称	次度限值	排放 (t/a)
	7/1/35	H ₂ S 待宰 NH ₃ 圏 臭气浓	X	《恶臭污染物排放标	0.2 0.0 <20 (无	005 012
		度 生产 区无 组织	频次,保证通风 	准》(GB14551-93) 表 1 中标准要求	0.01 0.0	014
	1 厂区无组织	废气 屠宰 <u>度</u>	间内胃肠容物等 废弃物;增加清 洗处理,增加通 风次数	《大气污染物综合排 放标准》(GB 16297-1996)表 2 元	量纲) # 1.0 0.0 0.40 0.4	 024 024
Z Hos Parkers	Z. Allis	NOx H ₂ S 污水处理 站无组织 臭气浓		组织排放限值限值 《恶臭污染物排放标准》(GB14551-93)	0.12 0.0 0.01 0.0 0.2 0.1	014 0007 022
	127	废气度	设备管理 H ₂ S NH ₃	表 1 中标准要求	量纲) 0.0	 020 070
A TOO THE REAL PROPERTY OF THE PARTY OF THE	无组织排放 总计		臭气浓, 颗粒物 SO ₂		0.0	
	③项目2	大气污染物年排放	NO_X			014
A TOP TO SERVICE AND A SERVICE	表 3.8-9		丰排放量核算表	7/13		
	序号 1	113	亏染物 SO ₂	朱 和	i放量(t/a) 0.456	100

③项目大气污染物年排放量核算

大气污染物年排放量核算表 表 3.8-9

	, ///	'	NO_X	1///	0.014
	③项目7	大气污染物年排放量核算		12 h	<u> </u>
	项目大學	气污染物年排放量核算见	表 3.8-9。		
7/05	表 3.8-9	大气污染物年排放量	技算表	2,405	
7	序号	污染物		年排放量(t/a)	
	1	SO ₂		0.456	
420	2	NO _x		0.767	
	3	颗粒物		0.140	
-,7/05	4 ////	非甲烷总烃		0.007	-,4/15
3	_5	H ₂ S	X, "	0.029	- X
	6	NH ₃	1	0.286	
100	7	臭气浓度			100
A DE FILES	1	The The	48	Kley The	Ho, We,
X 195	7/1/5	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 1/35	7/1/3

3.8.2 废水

(1) 废水水质及水量

项目废水包括屠宰废水、车辆清洗废水、检疫检验废水、锅炉系统排水、循环水系统排水及生活污水。

①屠宰废水

根据《排污许可证申请与核发技术规范 农副产品加工工一屠宰及肉类加工工业》(HJ860.3-2018)中附录 C 中表 C.1 和 C.2 废水产物系数,屠宰工业的废水产污系数见下表。

表 3.8-10 C.1 主要屠宰工业的废水产排污系数

			~			
产品名称	原料名称	工艺名称	规模等级	污染物指标	单位	产污系数
XL,		X	X	工业废水量	吨/吨-活屠重	7.166
	1		<1500 V/T	化学需氧量	克/吨-活屠重	13427
冻羊肉	羊	屠宰、分割	<1500 头/天 屠宰	氨氮	克/吨-活屠重	548
		4	盾辛 (本)	总磷	克/吨-活屠重	37
	9.,,			总氮	克/吨-活屠重	1169

其他屠宰工业废水的产污系数根据式(C-1)确定 产排污系数=对应的表 C.1 中的产物系数÷k1 (C-1

表 3.8-11 C.2 其他屠宰工业的废水产物系数调整表

**		1//0>	对应的产物系	数表为表 C.2	4/6
产品名称	1	产排污系	系数选择	产品调整系	数 k1
鲜羊肉类产品	5,14	冻羊网		J. 7.705	

本项目投产后屠宰肉羊量为 1000 头/d (40kg/头),活屠重为 40t/d,屠宰加工废水产生量为 286.6m³/d,废水中主要污染物为 COD、氨氮、总磷、总氮。

《屠宰与肉类加工废水治理工程技术规范》(HJ2004-2010)表3屠宰废水水 质设计取值见下表,本次评价取最大值进行计算。

表 3.8-12 屠宰废水水质设计取值

单位: mg/L (pH 除外)

污染物指标	COD	BOD_5	SS	氨氮	动植物油	рН
废水浓度范围	1500~2000	750~1000	750~1000	50~150	50~200	6.5~7.5

根据以上资料,结合《<屠宰及肉类加工工业水污染物排放标准(二次征求 意见稿)>编制说明》,确定本项目屠宰废水污染物浓度。

3.8-13 本项目屠宰废水污染物浓度一览表

单位: mg/L (pH 除外)

污染物	pН	COD	BOD_5	SS	氨氮	总氮	总磷	动植物油	总大肠菌群数
浓度	6.5~7.5	2000	1000	1000	150	163	5	200	40 万个/L

项目屠宰废水产生量为 286.6m³/d, 经厂区污水处理站处理后, 排入沙雅县污水处理厂进行深度处理。

②车辆清洗废水

项目车辆清洗废水产生量为 2m³/d, 主要污染物为 COD、BOD₅、氨氮、SS, 产生浓度分别为 200mg/L、80mg/L、15mg/L、200mg/L, 经项目污水处理站处理后排至沙雅县污水处理厂进行深度处理。

③检疫检验废水

项目设置检疫室对羊内脏、胴体等进行检疫,主要通过显微镜对内脏、胴体的切片进行显微观察,检疫以视检为主,不涉及细菌培养、理化检验等,废水产生量约为 0.5m³/d, 主要污染因子为 COD、BOD₅、SS、总大肠菌群数为主,该部分检疫室废水可能含有致病菌,根据《肉类加工厂卫生规范》(GB12694-90),需配备相应的消毒设施,对检疫室进行消毒后,产生的废水排入厂区污水处理站处理,处理后废水排至沙雅县污水处理厂进行深度处理。

④锅炉系统排水

锅炉软水排水量为 1m³/d, 主要污染物为 SS, 用于厂区泼洒抑尘。

⑤循环水系统排水

本项目循环水系统排水量为 0.1 m³/d, 主要污染物为 SS, 用于厂区泼洒抑尘

⑥生活污水

生活用水按照 80L/人 d 计算,项目加工区劳动定员为 80 人,则生活用水量 为 $6.4 \text{m}^3/\text{d}$,生活污水产生量按生活用水量的 80% 计,则生活污水产生量为 $5.1 \text{m}^3/\text{d}$ 。主要污染物为 COD、BOD₅、氨氮、总氮、总磷、SS,产生浓度分别为 350 mg/L、170 mg/L、30 mg/L、40 mg/L、6 mg/L、150 mg/L。生活污水经化粪池处 理后排至项目污水处理站处理后排入沙雅县污水处理厂进行深度处理。

根据《屠宰与肉类加工废水治理工程技术规范》(HJ2004-2010)中羊屠宰废水产生量为 0.2~0.5m³/头。本项目制定严格的节水制度,在设备的选择上采用节水型设备,经计算,项目单位产品基准排水量为 0.295m³/头,符合《屠宰及肉类加工工业水污染物排放标准》(二次征求意见稿)表 3 要求(单位产品基准排水量 ≤ 0.3m³/头)。

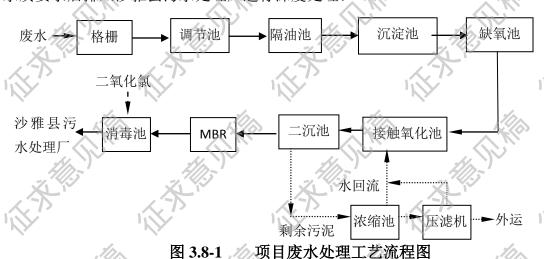
项目废水水量及水质见表 3.8-14。

北方原则樣

A A A A A A A A A A A A A A A A A A A				A THE REAL PROPERTY OF THE PARTY OF THE PART				7/1/25				
19	表 3.8-14 项	目废水污染	於源产生浓度 一	·览表	100	.//	<u> </u>		40	1/4	<u> </u>	>
	废水种类	废水量		1 1	要污染物(mg/	L,除大肠菌	群个/L	、pH 外)	Y.		废水去向	
7/17:5	405	(m^3/d)	COD BOD ₅	-, ((/-)	NH ₃ -N	, ((/-)	总磷	动植物油	总大肠菌群数	рН		-,4
	屠宰废水	286.6	2000 1000	1000	150	163	5	200	40万	6.5~7.5	4 5	1
	车辆清洗废水	2	200 80	200	15		12		-1	6~8	进入项目污	1
10	检疫检验废水	0.5	500 200	200					6000	6~8	消毒 水处理站	·
	生活污水	5.1	350 170	150	30	40	6	<	X(0)	6~8	化粪池	>>
4/115	锅炉系统排水	1	//\)\ ////5	50		7///5		7///5		6~8	泼洒抑尘	4/
, X	循环水系统排水	0.1	Y	50	×	(1/2		2,7//5	- 4	6~8	(7 -7 -7 - 1 -1 -7 - 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	N. A.
	混合废水(进入厂区	20.42	1956.6 978.0	978.5	146.7	159.5	5.0	194.8	39万		经项目污水处理站处 理后排至沙雅县污水	1
	污水处理站的废水)	294.2	770.0	776.5	140.7	137.3	3.0	174.0	10h	6~8	处理 厂	
	A Aller De la Contraction de l			A A A A A A A A A A A A A A A A A A A				A May				
				A Aller				A Mas				
						51		X 1/15				

THE PARTY OF THE P

北水原ル港 表 3.8-15


THE THE PARTY OF T

	1			17					1		1		1	
4	-	表 3.8-15	页目废水污染源源	强核算	结果及相关	全参数一览表	40	T	40		40			
序	序].	产污节点	污染源	废水量	污染		产生量	│ 处理措施	排放	. 11	KI	排放去向		L
Z (3)	j	7/13	Z. 13	(m^3/d)	因子 pH		产生量(kg/d)	<i>Z</i> 1 1	浓度 (mg/L) 6~8 (无量纲)	排放重人t/a)		ZLIS'		71
	10			15	COD	1956.6	0.576		328.7	29.012	15			75
			. (3)	· 1	BOD ₅	978.0	0.288		199.5	17.609	1.		.1/3	
4	Ý	混合污水(屠宰			SS	978.5	0.288		117.4	10.363				
	Į.	发水、车辆清洗	屠宰加工、车辆清 洗、检疫室、职工	294.2	NH ₃ -N	146.7	0.043	厂区污水	20.9	1.846	沙以死生。	县污水处理厂		1/2
X		友小、位没位验	洗、检疫室、职工 生活	2)4.2	总氮	159.5	0.047	处理站	30.3	2.674	リンカル	之(1)小处(全)		XL!
	月	· 生活污水)		1	总磷	5.0	0.001		0.9	0.083	1		心	
7		\y	Ky	4	动植物油	194.8	0.057		38.2	3.370	10			,
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			总大肠菌群	39万(个)	11463.2 万 (个)		3897	343.929 万 (个)				
2/10-10-2	,	锅炉系统排水	锅炉系统	<u>)</u> 1	数 SS	50	-0.05	1 2	3697	0)	Z/m-		Ź
3	· 1	盾环水系统排水	循环水系统	0.1	SS	50	0.005	X	/	X-0	厂	区泼洒抑尘		X
	1			1í)		10	<u> </u>	15		10	5/3
\ ./l\r		./0		Jan	,	Jan	Jak		Jos	,	100	.//	×	
(1) K(0)				Klo,		1400	(1) Ho.		VI Klas		Klas		())	
4/11/2		4/175	2/m=		4/125		4/05	4//		4/115		4/11/25		4//
, X		A. W.	The second second		X	X		N. Y.		X		A N	,	N.
	1			1					1	X .	1	N.	心	
		10		Jan.	~	JA.	1/1/2	*		·	100	10	`	-
	,			Klo.		52	(1) Klos		(1) Klos		Klos		Y	
4/17.5		4/17.5	401.5	~	401.5		4/02-5	4/	25	4/11.5		4/17.5		4//
A TO		1			A W	人类		A T	Y	A TO		A TO		A.
	1	N.		1					1	A TOP OF THE PARTY	1			

(2) 废水防治措施

待宰圈冲洗废水中用于液态肥生产;锅炉软水排水及排污水回用于地面冲洗;屠宰废水和生活污水均进入项目污水处理站处理。污水处理站采用"格栅一隔油沉砂一调节一缺氧一接触氧化一沉淀一消毒"处理工艺,设置格栅、沉砂池、隔油沉砂池、调节池、水解酸化池和消毒池等。废水首先进入格栅,去除废水中的碎肉、骨屑、内脏、羽毛等杂物,再经隔油沉砂池去除废水中的粪便、砂子、食物残渣等,除油后的废水进入曝气调节池调节水质和水量,经均质的废水经泵提升至缺氧池,此阶段碳水化合物被降解为脂肪酸,以提高水体的可生化性,再进入接触氧化池,大部分有机污染物在此被生化降解而去除,经处理的废水进入消毒池,采用二氧化氯对废水进行消毒。项目污水处理站工艺流程简图见图3.7-1。

项目进入污水处理站的废水量为 294.6m³/d, 污水处理站设计处理能力为 1000m³/d, 能够满足项目废水处理需要。废水经处理后出水水 COD300.4mg/L、BOD₅214.6mg/L、SS135.1mg/L、氨氮 34mg/L、总氮 45.3mg/L、总磷 3.0mg/L、动植物油 38.9mg/L、大肠菌群 3000 个/L、pH6~8, 满足《肉类加工工业水污染物排放标准》(GB13457-92)表 3 三级标准、《屠宰及肉类加工工业水污染物排放标准》(二次征求意见稿)表 3 间接排放限值要求以及沙雅县污水处理厂进水水质要求后排入沙雅县污水处理厂进行深度处理。

3.8.3 噪声

项目噪声污染源主要为电麻机、宰杀设备、分割设备、污水处理风机、各类 泵机以及猪叫声等,声级值在 75dB (A)~100dB (A)。项目采取选用低噪声设 备、基础减振、风机加装隔声罩、厂房隔声等措施控制噪声,采取以上措施后, 再经距离衰减,厂界噪声满足《工业企业厂界环境噪声排放标准》 (GB12348-2008)2类标准要求。项目设备噪声情况见表 3.8-16。

表 3.8-16 设备噪声情况表

	序号	生产车间	设备名称	治理前噪声 值 dB(A)	治理措施	治理后源强 dB(A)
-	1	待宰圈	泵类、羊叫声	75	基础减震、隔声罩	60
1	2	屠宰车间	电麻机、宰杀设备、分割 设备、制冷设备、风机	80~100	基础减震、风机消声、 厂房隔声	65
	3	污水处理站	泵类、风机	75	基础减震、隔声罩	65

3.8.4 固体废物

项目产生的固体废物主要为羊舍待宰区产生的羊粪、内脏处理过程中产生的 肠胃容物(羊粪),羊屠宰过程中产生碎肉、碎骨,不合格羊及产品,污水处理 站产生的污泥,以及废弃包装袋、废树脂、职工生活垃圾等。

(1) 羊粪 /

本项目羊粪主要产生于待宰区以及内脏处理过程中产生的胃肠容物,根据《畜禽养殖业污染治理工程技术规范》(HJ497-2009)附录 A表 A.2 中数据可知, 牛产粪量为 20kg/d头,本项目羊待宰区临时饲养时长为 12-24h,本次评价按 24h 计,本项目日屠宰羊 1000 只(折算牛 67头),本项目待宰区羊粪产生量为 402t/a。 本项目在待宰区采取禁食饲养方法,因此屠宰时胃肠容物会减少,本次评价按粪 便产生量的 50%计,则本项目屠宰内脏处理过程中产生的羊粪量为 201t/a。

本项目待宰区采取干清粪工艺,产生的羊粪为一般固体废物,集中收集后外售作肥料加工。

(2) 碎肉、碎骨

本项目在屠宰过程中会产生一定量的碎肉、碎骨,根据物料平衡,本项目屠宰过程中碎肉、碎骨产生量约为 205t/a,属于一般固体废物,集中收集后定期外售作饲料加工。

(3) 不合格羊及产品

本项目为羊屠宰建设项目,严格按照《牛羊屠宰产品品质检验规程》 (GB18393-2001)进行生产及产品检验检疫,不可以避免会产生少量不合格品。 不合格品主要包括不合格肉羊、不合格产品,由于本项目在进场时已采取严格检 验检疫流程,因此不合格产品产生量较少,本次评价按合格品的 0.1%计,产生 量约为 6t/a,属于危险废物 (HW841-003-01),送至高温高压化制罐处理,在罐内经搅碎、水解、干燥后外售作肥料加工。

(4) 污泥

污泥中含有丰富的氮、磷、钾,是很好的肥料,土地施用是最经济合理的处置方式。根据《屠宰与肉类加工废水治理工程技术规范》(HJ2004-2010),污泥产生量一般可按 0.3~0.5kg/kg-BOD₅ 计算,污泥含水率为 99.3%~99.4%,污泥在厂区内应进行浓缩及脱水,项目设置重力式污泥浓缩池,污泥经重力浓缩后,由高压泵打入污泥脱水机,使污泥内的水挤压出,达到脱水的目的,脱水后污泥含水率小于 80%。本项目 BOD₅ 处理量为 68.7t/a,污泥含水率按 80%计,则项目污泥产生量为 171.8t。污泥经浓缩脱水后外售堆肥用作农肥。脱水污泥禁止露天堆放,并应及时外运。项目设置污泥暂存间,地面采取防腐防渗处理,脱水污泥采用密闭车辆运输,污泥脱水产生的清液、滤液和冲洗水等重新进入污水处理站进行处理。

(5) 废包装袋

本项目产品需包装后外售,在包装过程中会产生一定量的废弃包装袋、包装箱等,产生量约为2t/a,集中收集后外售综合利用。

(6) 废树脂

本项目软水制备采用离子交换树脂工艺,树脂每 5 年更换一次,产生量为 0.5t/次,交由环卫部门统一处理。

(7) 生活垃圾

本项目职工 80 人,生活垃圾按 0.5kg/d·人,项目生活垃圾产生量共计 12t/a,由环卫部门统一处理。

项目固体废物产生量及处置措施见表 3.8-17。

表 3.8-17 一般工业固体废物产生量与处置措施

单位: t/a

序号	污染工序	污染物	产生量	处置措施	排放量
1	待宰圈、内脏处理	粪便	603	外售作肥料加工	0
2	屠宰加工	碎骨、碎肉	206	外售作饲料加工	0
3	污水处理站	污泥	171.8	外售堆肥用作农肥	0
4	包装	废包装袋	2	外售综合利用	0
5	软水制备	废树脂	0.5t/次	环卫部门统一处理	0
6	生活垃圾	生活垃圾	12	环卫部门统一处理	0

表 3.8-18 危险废物产生量与处置措施 单位: t/a

一号	#/J///	危险废 物类别	危险废 物代码	产生量	产生工序及 装置	形态	主要成分	有害 成分	产废周期	特性	'/\
1 格及	100	HW01 医疗废 物	HW841- 003-01	6	检疫过程	固体	病死 羊、不 合品 产品	病死 羊、不 合格产 品	偶发	感染性	暂间急病间害外阴 急病 间急病 医子子 通知 电子子 电子子 电子子 电子子 电子子 电子子 电子子 电子子 电子子 电子

3.8.5 非正常工况

本工程非正常生产主要是指环保设施达不到设计规定指标情况下的超额排

(1)非正常生产排污状况分析

为保证工程达标排放,评价针对不同的污染排放点源规定了必备的防治措 施,但在实际运行过程中,将会出现环保设施不能实施或实施不正常等引起超标 排污, 主要表现为以下几种情况:

- ①污水处理站运行不稳定或故障导致废水不经处理直接外排。
- ②因管理不善或设计原因,废气处理设施净化效率达不到要求,引起超标排 放。
 - (2)非正常生产排污分析

非正常排放事故多源于环保设施达不到设计要求, 在此类问题解决之前, 将 维持较长时间,可代表长期的超额排污水平。

①废气污染物超额排放分析

主要表现为污水处理站废气处理装置故障导致废气处理效率下降出现超标 排放处理效率按0%计。

本项目环保设施不达标引起的废气污染物超额排放结果见表 3.8-19。

表 3.8-19 非正常排污时大气污染物排放情况一览表

序	非正常排放类型	污染物	废气量	排放速率	时长	频次	排放量
号	非	75朱初	(m^3/h)	(kg/h)	(h/次)	(次/a)	(kg/a)
1		H_2S	1.	0.003	4	2	0.024
2	污水处理站废气	NH ₃	5000	0.089	4	2	0.712
3		臭气浓度		5000(无量纲)	4	2)

本评价要求建设单位应加强各环保设备的运行管理,指派专人负责设备的日常维护、维修工作;当发生故障时及时进行切换,并对故障进行抢修,一般 2~4 个小时可排除故障,不会影响生产的正常进行。

②废水污染物超额排放分析

在污水处理设施运行事故(设施堵塞、膜损坏、污泥变质、膨胀等),污水处理效率降低,污水处理系统发生运行事故情况一览表见 3.8-20。

表 3.8-20 污水处理系统发生运行事故情况一览表

序	非正常排放类型	污染物	废水量	排放浓度	时长	频次	排放量
号	非正角排放矢室	行架彻	(m^3/h)	(mg/L)	(h/次)	(次/a)	(kg/a)
1		COD		1956.6	2	1///	144.006
2	污水处理系统(处理	氨氮	36.8	146.7	2	XLLIN	10.797
3	效率降至 20%)	BOD_5	1	978.0	2	1	71.981

在污水处理设施运行事故时,要求污水处理站减小进水量,或不再接纳废水。若故障较严重,短时间内无法正常运行,应该立即上报当地环保部门,事故状态下废水在事故水池暂存,待恢复正常运行后分批排至污水处理系统处理,不外排。

3.9 清洁生产分析

清洁生产是一种全新的创造性的思想,该思想将整体预防的环境战略持续应用于生产过程、产品和服务等过程中,以增加生态效率和减少人类及环境的风险。《中华人民共和国清洁生产促进法》第二条指出,"本法所称清洁生产,是指不断采取改进设计、使用清洁的能源和原料、采用先进的工艺技术与设备、改善管理、综合利用等措施,从源头削减污染,提高资源利用效率,减少或者避免生产、服务和产品使用过程中污染物的产生和排放,以减轻或者消除对人类健康和环境的危害"。清洁生产是以综合预防污染为目的的环境战略,以节能、降耗、减污、增效为宗旨,是实现可持续发展的重要手段。

本次环评针对项目的生产特点,从原辅材料及产品、生产工艺及设备的先进

性、节能措施、污染物产生及废物回收利用、环境管理要求等方面分析项目的清洁生产水平。

3.9.1 原辅材料、产品分析

项目的原材料主要为肉羊,主要产品是羊肉。项目使用的原材料和产品均满足国家、行业质量标准要求,生产过程中不使用国家法律、法规、标准中禁用的物质。屠宰车间设有卫生检验检疫设施;对生产全过程严格按《肉类加工厂卫生规范》(GB12694-90)进行控制,符合清洁生产要求。

3.9.2 生产工艺及设备

项目引进国内先进的屠宰生产线,屠宰加工工序所用设备均采用国内先进、处理量大、能耗低、自动化程度高的生产设备,生产过程中可节省大量的人力。整个生产工艺流程除吊挂、燎毛、掏膛、副产品加工等人工操作外,其余均采用自动化流程,生产设备自动化程度高。

综上所述,项目屠宰加工技术实现节能降耗,降低运行成本,生产工艺先进, 生产设备较为先进,因此本项目选用的生产工艺技术和设备清洁生产水平较高。

3.9.3 节能措施

①节能措施

根据本项目生产的特点,设备选型尽量考虑低能耗设备,严格控制系统补水量。

②本项目制定严格的节水制度,加强巡检,杜绝跑冒滴漏现象,在设备的选择上采用节水型设备,减少用水量,在员工中开展节水教育,使职工树立节约用水意识等措施,能够有效减少项目的水资源消耗。

3.9.4 污染物产生及废物回收利用

- (1)项目屠宰工序废水产生量折合每头排水量为 0.295m³/头,对照《屠宰及肉类加工工业水污染物排放标准》(二次征求意见稿)表 3 特别排放限值单位产品基准排水量为 0.3m³/头,废水产生量能满足要求。
- (2)项目待宰圈粪便及冲洗废水进行液态肥生产,减少了污水及固废的产生。
- (3)项目采用 1 台燃气锅炉对生产生活进行供热,采用清洁燃料后烟气经低氮燃烧器处理后排放,烟气中污染物含量较低。
 - (4) 通过选用低噪声设备、设置隔声罩、厂房隔声等措施,减少噪声对周

围环境的影响。

(5)项目对不合格羊及产品采用无害化处理,最终生产为有机肥的原料或 是花卉肥料原料外售,减少了固废的产生。

3.9.5 清洁生产分析结论

综上所述,本项目采用先进的生产工艺及设备,采取节能降耗措施,减少污染排放,产品符合相关标准要求,提高清洁生产管理水平,是利用现代高新技术进行产业化生产的具体体现,符合国内清洁生产先进水平要求。

3.10 污染物排放量汇总

3.10.1 污染物排放量汇总

根据污染源分析结果,拟建工程投产后污染物年排放量见表 3.10-1。

表 3.10-1 拟建工程污染物年排放量一览表

单位: t/a

污染物	/n.		废	气		/n.	废	水	工业
排放量	NH ₃	H_2S	NO_X	SO_2	颗粒物	非甲烷总烃	COD	氨氮	固废
合计	0.286	0.029	0.767	0.456	0.140	0.007	29.012	1.846	0

3.10.2 污染物总量控制

污染物总量控制是将某一区域作为一个完整体系,以实现环境质量目标为目的,确定区域内各类污染物的允许排放量,从而在保证实现环境质量目标的前提下促进区域经济的健康发展。

3.10.2.1 污染物总量控制因子

结合项目所在区域环境质量现状和项目自身外排污染物特征,确定本项目的总量控制因子为:

(1) 监督管理因子:

废气: SO₂、NO_x、颗粒物;

废水: COD、氨氮。

(2) 总量控制因子:

废气: SO₂、NO_x;

废水: COD、氨氮。

3.10.2.2 总量控制指标

(1) 监督管理指标

根据工程分析结果,本次评价以工程投运后污染物实际排放量作为本项目的

监督管理指标。

即项目建成后污染物监督管理指标为: 大气污染物: SO₂0.456t/a、 NO_x0.767t/a、非甲烷总烃为 0.007t/a、颗粒物为 0.140t/a、NH₃ 为 0.286t/a、H₂S 为 0.029t/a; 水污染物: COD: 94.087t/a、氨氮: 5.977t/a; 工业固废为 0t/a。

W. W.

一个四日废水污染物总量指标按照沙雅县污水处理厂出水水质指标核定。
沙雅县污水处理厂出水执行《城镇污水处理厂污染物排放标准》
3B18918-2002)及其修改单表一级 A 标准(COD50mg/L、氨氮 5mc/l、
3总量指标计算过程如下: (GB18918-2002)及其修改单表一级 A 标准(COD50mg/L、氨氮 5mg/L),本 项目总量指标计算过程如下:

COD: $M=294.2m^3/d\times300d\times50mg/L\times10^{-6}=4.413t/a$

氨氮: M=294.2m³/d×300d×5mg/L×10⁻⁶=0.441t/a

项目建成后总量控制指标见表 3.10-2。

表 3.10-2 项目总量控制指表

W.A.

W. W.

n.l. 171	大气污		废水污染物		
时段	SO_2	NOx	COD	氨氮	
总量控制指标	0.456	0.767	4.413	0.441	

因此,本项目总量控制目标为:

4环境现状调查与评价

4.1 自然环境现状调查

4.1.1 地理位置

沙雅县位于新疆维吾尔自治区西南部,阿克苏地区东偏南,处于塔里木盆地北部,渭干河绿洲平原的南端,北靠天山,南拥大漠。地处东经 81°45′~84°47′,北纬 39°31′~41°25′间,东西宽 180km,南北长 220km,总面积 31972.5km2。北接天山南缘的库车、新和两县,南辖塔克拉玛干沙漠的一部分,和田地区的民丰、于田两县沙漠相连,西与阿克苏市毗邻,东南和巴州的尉犁县接壤。我国最长的内陆河---塔里木河由西向东从境域中偏北部横穿而过。全境海拔 943—1050米之间,北高南低,由西向东略有坡降,县城距省府乌鲁木齐市的直线距离 486千米,公路里程 832 千米,距阿克苏市公路里程 252 千米。

项目建设地点位于沙雅县民富村,厂址中心地理坐标为东经 82°43′22.17″,北纬41°8′19.69″。厂区东南侧为排碱渠,其余为空地。项目周边无重点文物保护单位和自然保护区等敏感点。

4.1.2 地形地貌

沙雅县大致可分为沙漠、塔里木河谷平原、渭干河冲积扇平原三大部分。全境海拔943~1050m 之间,北高南低,由西向东略有坡降,塔里木河自西向东在沙雅县中部偏北横贯全县,将沙雅县分为南北两部分,北部为渭干河冲积扇下游平原区,是沙雅县的农业及人口聚居的地方。面积有880km²,占总面积的2.75%,但宜耕地只占此处面积的很小一部分。在河谷平原里,有重盐渍地2583km²,剩余的宜林宜牧面积只有2212km²。

①渭干河冲积洪积缓倾斜细土平原渭干河冲积洪积平原位于县城北部,村落及田园分部于渭干河及其支流,干、支渠道的两侧。县辖面积880km²,占全县总面积的2.75%,是全县的主要耕作区,亦是人口集中、村舍毗邻的地方²。地势北高南低,海拔由最北部的1020m降至塔里木河沿岸的950m。坡度南北3‰~4‰、东西2‰。是渭干河冲积平原水力侵蚀堆积而成的地貌。地表物质主要由冲积粉细沙、亚沙土、亚粘土组成,属山前缓倾土质平原,系现代山前绿洲带。

②塔里木河河谷冲积细土平原塔里木河谷平原主要分部在县域中偏北部,西自喀玛亚朗东到喀达墩,横贯全境,由塔里本河泛滥冲积而成,长约180km;南 北20-60km,宽窄不等,呈长条状。县内面积5343.15km²,占全县总面积的16.85%。

由第四纪最新沉积物组成,地形西高东低,由北向南倾斜,坡度为20‰~25‰。由于塔里木河的作用,区域内河床低浅,湖泊星布,是天然胡杨林及甘草的主要生长地,生长有天然胡杨林2133.33km²,其次还有166.67km²的野生甘草、200km²的罗布麻及其他如野生麻黄、假木贼等野生植物,构成一条绿色的屏障,对阻挡塔克拉玛干沙漠的北袭风沙有不可替代的作用。

③塔克拉玛干沙漠区塔克拉玛干沙漠区位于县城南部,面积颇大,在塔里木河冲积平原基底上由风蚀风积而成。南北长约160km,东西宽约170km,县境面积25732km²,占全县总面积的80.4%。地势自西向东略有倾斜,自南向北稍有抬升,平均坡降为1/6000。地表形态均为连绵起伏的沙丘,相对高差一般在10~50m之间。由于该区域气候干旱,植被稀少,在风力的作用下,沙丘的形态和位置不断在变化和移动。该区无有人类居住,但地下油气资源丰富,为我国西气东输的主要气源地之一;沙漠中植被稀少,部分地区分布有稀疏胡杨、柽柳及面积不等的麻黄、沙棘、假木贼、骆驼刺等。

本工程所在区域位于沙雅县北部,位于塔里木河河谷冲积细土平原。

4.1.3 气候与气象

项目区地处欧亚大陆腹地,为典型的温带大陆性干燥气候。其显著气候特点是:降水稀少,夏季炎热、冬季干冷。年温差和日温差均较大,光照充足,热量丰富,蒸发强烈,风沙活动频繁。沙雅县主要常规气象要素统计资料见表 4.1-1。

表 4.1-1 沙雅县主要气象要素表

		/// /
项目	单位	数值
平均气温	C	11.4
最热月平均气温	°C	_ '\
最冷月平均气温	°C Alla	- 4/6
历年极端最高气温	$^{\circ}$	41.2
历年极端最低气温	4/2	-24.2
年主导风向	**	NE
最大风速极限	m/s	28.0
静风频率平均值	%	- ///
年降雨量	mm	7///0
年平均风速	m/s	1.37
年平均降水量	mm	47.3
年均相对湿度	%	49
年平均大气压	hPa	956.5
	平均气温 最热月平均气温 最冷月平均气温 历年极端最高气温 历年极端最低气温 年主导风向 最大风速极限 静风频率平均值 年降雨量 年平均风速 年平均降水量 年均相对湿度	平均气温

序号	项目	单位	数值
14	年均蒸发量	mm	2044.6
15	最大冻土深度	m	0.77
16	年平均日照时数	h	
17	年平均逆温层高度	m A	- 4/6
18	历年平均雷暴日数	d	

4.1.4 水文

(1) 地下水类型及含水岩组富水性

在塔里木盆地,环盆地的冲洪积倾斜平原呈向心状倾斜,上述环带状特征最为明显,山前巨厚的第四系松散堆积物为地下水的储存提供了良好空间。盆地北缘的阿克苏冲洪积倾斜平原中上部、渭干河-迪那河冲洪积倾斜平原中上部以及盆地南缘和田至于田一代,第四系沉积厚度一般为 1000~1500m,其它山前冲洪积倾斜平原和盆地西缘诸河流冲洪积平原中上部第四系厚度一般为 500~1000m,其组成岩性均为单一的卵砾石和砂砾石层,使这些地区成为单一结构的孔隙潜水分布区。由盆地南、北缘和西缘向盆地中心防线,地势逐渐降低,第四系厚度逐渐变薄,至冲洪积倾斜平原下部溢出带部位和冲洪积平原区,组成岩性由单一卵砾石、砂砾石层逐渐变为细土与砂砾石和砂层互层的多层结构,这里分布的地下水除上部的孔隙潜水外,在下部还赋存承压水。到盆地腹部塔里木河冲积平原区和塔克拉玛干沙漠区,组成岩性为黏土与粉细砂呈互层状,这里分布的地下水位多层结构的潜水和承压水。塔克拉玛干沙漠区,由于细颗粒黏性土夹层薄、不稳定或呈透镜体状,期间分布的多层结构地下水仅具有微承压性质。

古河道和冲蚀洼地地下水埋深 1~3m, 矿化度在 1~3g/L, 是可利用的淡水资源。沙漠区含水层为下伏的冲积、洪积、风积粉细砂层。潜水单井出水量一般为 100~500m³/d,含水层在 10~100m 之间。沙漠腹地亦有承压水存在,含水层在 200m~500m 之间,单井最大涌水量 700~4000m³/d。地下水流方向由西向东,含水层岩性为粉细砂、夹不连续的亚砂土、亚粘土薄层,总厚度超过 300m,没有区域性隔水层,深层地下水矿化度大于 10g/L。

(2) 地下水的补给、径流与排泄

塔克拉玛干沙漠中的地下水大体由南向北缓慢径流(盆地西南缘由西南向东北径流),至塔里木河附近折转向东径流,下游向东南径流,最终排泄于台特玛湖和罗布泊,并通过蒸发和植物蒸腾进行垂直排泄。

(3) 地下水化学特征

在塔里木盆地中,地下水的水化学特征环带状水平分带规律表现尤为明显。但在占据塔里木盆地 58%以上的塔克拉玛干沙漠中,地下水的水化学特征除环带状水平分带规律外,还表现为与现代河床和古河道相垂直的水平分带规律。在现代河床两侧和古河道中,含水层颗粒相对较粗,地下水径流条件较好,水质相对较好,以 Cl SO₄ HCO₃-Na 型、Cl SO₄ HCO₃-Na Mg 型或 Cl SO₄-Na Mg 型、Cl SO₄-Na 型水为主,矿化度<1g/L 或 1~3g/L。向古河道两侧含水层颗粒变细,地下水径流条件变差,水质逐渐变差,水化学类型逐渐过渡为 Cl SO₄-Na 型或Cl-Na 型,矿化度逐渐增大到 3~5g/L 或 5~10g/L。在广袤的沙漠中地下水化学类型多为 Cl SO₄-Na 型(或 Cl SO₄-Na Mg 型),矿化度多在 3~5g/L 或 5~10g/L。

4.1.5 土壤

评价区土壤类型较为简单,主要以荒漠风沙土为主。荒漠风沙土形成于漠境生物气候带,属典型大陆气候。冬季干燥寒冷,夏季酷热,年均温 6~9,年降水量一般在 50~150mm,50%集中在 7、8 月,多突发性暴雨,年温差、日温差悬殊,于燥度≥3.50。沙丘起伏大,多为流动格状、链状沙丘链,有的己形成沙山,相对高度达 500 米。植被以早生、超早生灌木、半灌木为主,覆盖率小于 20%。风沙土剖面无明显的腐殖质层和淋溶淀积层,一般由薄而淡的腐殖质层和深厚的母质层组成,剖面构型为 A-C 或 C 型。流动阶段土壤剖面分异不明显,呈灰黄色或淡黄色,单粒状结构。

评价区域土壤类型为荒漠风沙土。

4.2 沙雅县污水处理厂概况

沙雅县污水处理厂位于沙雅县城西南方向,服务范围为沙雅县和工业园区,处理对象为服务范围内的生活污水和工业废水,沙雅县污水处理厂工艺采用污水处理采用"吸附混凝沉淀-厌氧水解好氧处理"工艺流程,沙雅县兴雅污水处理有限责任公司2008年获得环评批复,2009年开始建设,设计总规模为10万m2/d,工程建设分3期实施。至2008年7月肥建成2万t/d的处理规模,2018年建成2万t/d,目前沙雅县污水处理厂规模为4万t/d。排污许可证证书编号:91652924568868945T001Q。沙雅县污染处理厂已进行提标改造,工艺为"臭氧催化氧化+硝化+反硝化+滤布过滤+消毒+污泥干化",提标改造后出水水质满足《城镇污水处理厂污染物排放标准》(GB18918-2002)中一级A标准。

本项目距沙雅县污水处理厂 800m, 在污水处理厂收水范围内, 本项目排水量为 294.2m³/d, 在污水处理厂处理负荷余量范围内, 能够满足本项目生产需求。

表 4.2-1	沙雅县污水处理厂	[*] 进出水水质要求一	览表
1 ₹ 7 •#⁻⊥	フルムコルスの生		ルウル

Ī	项目	ÆH	COD	NH ₃ -N	BOD ₅	SS	总氮	总磷	动植物油
>	坝日	рН	СОБ	INIT13-1N	BOD ₅	33	心炎	心神	4月1日1月1日
	进水水质	6.5~9.5	500	45	350	400	70	8	100
	出水水质	6~9	50	5(8)	10	10	15	0.5	1

注:括号外数值为水温>12℃时的控制指标,括号内数值为水温≤12℃时的控制指标

4.3环境敏感区调查

环境敏感区包括需要特殊保护地区、生态敏感与脆弱区和社会关注区。根据 调研, 站场周边的环境敏感区主要包括生态保护红线区、自然保护区、国家沙漠公园、水土流失重点预防区和重点治理区等。

4.3.1生态保护红线

生态保护红线指在生态空间范围内具有特殊重要生态功能、必须强制性严格保护的区域,是保障和维护国家生态安全的底线和生命线,通常包括具有重要水源涵养、生物多样性维护、水土保持、防风固沙、海岸生态稳定等功能的生态功能重要区域,以及水土流失、土地沙化、石漠化、盐渍化等生态环境敏感脆弱区域。

目前新疆维吾尔自治区生态保护红线正在编制修改中,本项目北距离拟定生态保护红线(土地沙化生态保护红线区)最近为8.1km,本项目不在红线保护范围内。

4.3.2沙雅县塔里木河上游湿地自然保护区

新疆塔里木河上游湿地自然保护区位于新疆塔里木河流域上游范围内,涵盖了塔里木河有沙雅县境内 164.38km 流域,包括塔河流域的古河道、自然积水坑、河漫滩、冲蚀阶地和台地等:河流两岸的沼泽、湖泊、水塘、人工水库、排水沟渠等:以及荒漠中的积水洼地。行政上跨越沙雅县一牧场、二牧场、英买里镇、海楼乡、托依堡镇、塔里木乡,地理坐标为:东经 81 44'45"~83 39'06"、北纬41°09'55"~40°40'05"总面积为 256840hm²,海拔 950-1020m。

新疆沙雅塔里木河上游湿地自然保护区典型干早荒漠隐域性湿地,是新疆内陆干旱区塔里木河流域集河流湿地、湖泊湿地、沼泽湿地的人工湿地于一体的典型的、永久性湿地。其建设内容主要包括塔里木河上游鸟类、鱼类、有蹄类野生

动物、生物多样性等保护小区。是集生态保护、生态重建、科研监测、宣传教育、生态旅游等可持续利用为一体的资源管理保护区。新疆塔里木河上游湿地自然保护区属于大型湿地自然保护区,保护区面积 256840hm²,其中核心区面积为71586hm²,占保护区总面积的 27.87%;缓冲区面积为149468hm²,占保护区面积的 58.08%,实验区面积为 36086hm²,占保护区面积 14.05%。

本项目位于新疆塔里木河上游湿地自然保护区之外。

4.3.3沙雅国家沙漠公园

沙漠公园是以沙漠景观为主体,以保护荒漠生态、合理利用沙漠资源为目的,在促进防沙治沙和维护生态服务功能的基础上,开展公众游憩休闲或进行科学、文化和教育活动的特定区域。

2014 年 9 月,沙雅国家沙漠公园成为全国首批国家级沙漠公园之一。沙雅国家沙漠公园位于新疆阿克苏沙雅县,面积为 27800 公顷。 建于沙雅县盖孜库木乡,于塔里木古河道范围内,距离沙雅县城 60 公里。规划面积 27800 公顷,建设期限为 2014 年-2020 年,规划有沙地保育区、宣教展示区、沙漠体验区、服务管理区等。

本项目位于沙雅国家沙漠公园之外。

4.3.4沙雅县盖孜库木国家沙化土地封禁保护区

根据《中华人民共和国防沙治沙法》(中华人民共和国主席令第五十五号)《国家沙化土地封禁保护区管理办法》(林沙发[2015]66号)有关规定,2016年12月28日,国家林业局正式将沙雅县盖孜库木乡南部2.1万公顷的沙化土地划分为国家级沙化土地封禁保护区(国家林业局公告(2016年第22号)),距离沙雅县城约46km,地处塔里木河南岸,塔克拉玛干沙漠北缘。四至地理坐标N40°39'04",E82°34'22";N40°48'19",E83°02'20";N40°48'45",E82°34'36";N40°38'38",E83°02'02"。

封禁意义:对封禁区人为活动频繁地段采取全封方式修建围栏,对风沙流动频繁地段采取机械固沙埋设草方格沙障,通过采取固沙压沙、生态修复等方式,促进封禁保护区内植被的自然恢复和地表皮的形成,拯救现有天然荒漠植被,环保生态环境,遏制沙化扩展趋势。

2016 年开始实施沙化土地封禁保护试点补助项目(新林计字[2016]385 号), 主要包括刺丝围栏 40. 34km,维修刺丝围栏 3.2km,草方格沙障 69. 03hm2;建 设护管站 1 座,建筑面积 289. 21m,检查哨卡 1 座,建设输电线路 4.638km,维修道路 4.43km,设置警示牌 147 个,安装监控设备 1 套,购置相关检测、保护等设施设备。

封禁期限: 永久。

本项目位于沙化土地封禁保护区之外。

4.3.5水土流失重点治理区和预防区

水土流失重点预防区指水土流失潜在危险较大的区域,水土流失重点治理区指水土流失严重的区域。根据《关于印发新疆维吾尔自治区级水土流失重点预防区和重点治理区复核划分成果的通知》(新水水保〔2019〕4号),新疆共划分了2个自治区级重点预防区,4个自治区级重点治理区。其中,重点预防区面积19615.9km²,包括天山山区重点预防区、塔里木河中上游重点预防区;重点治理区面积283963km²,包括额尔齐斯河流域重点治理区、天山北坡诸小河流域重点治理区、塔里木河流域重点治理区、伊犁河流域重点治理区。

项目所在区域新疆维吾尔自治区阿克苏地区沙雅县境内,属于塔里木河中上游水土流失重点预防区和塔里木河中上游水土流失重点治理区范围内。

所在区域水土流失预防范围为: 塔里木盆地北部山区天然林区、天然草场, 开都河、阿克苏河、渭干河等主要河流天然河谷林草区,国家及自治区确定的自 然资源开发区域,天山南坡行业带,天然胡杨林区,绿洲外围的天然荒漠林、地 质公园、重要野生植物资源原生境保护区等。

水土流失预防对象为:①天然林草、植被覆盖率较高的人工林、草原、草地。②主要河流的两岸河谷林草以及湖泊和水库周边植物保护带。③植被或地貌人为破坏后,难以恢复和治理的地带。④水土流失严重、生态脆弱的区域可能造成水土流失的生产建设活动。⑤重要的水土流失综合防治成果。⑥重要野生植物资源原生境保护区。

水土流失预防措施为:在塔里木河等主要河流产流、汇流区域加强对河谷林草的保护,对退化草场进行生态修复,合理利用草场资源,发展人工饲草料基地的建设,实施以电代柴工程,保护河谷林草。

4.4 环境质量现状监测与评价

本次环境空气质量以及声环境质量现状由新疆力源信德环境检测技术服务有限公司进行监测其中环境空气质量现状监测时间为2018年6月23日~6月29

日; 声环境监测时间为 2018 年 6 月 22 日。地下水环境质量现状引用《阿克苏市生活垃圾发电项目环评现状监测》数据,由新疆天合环境技术咨询有限公司于2017 年 5 月 9 日进行监测。

4.4.1 环境空气质量现状监测与评价

4.4.1.1 环境质量达标区判定

项目环境空气质量现状调查与评价采用生态环境部环境工程评估中心国家 环境保护环境影响评价数值模拟重点实验室在环境空气质量模型技术支持服务 系统中发布的新疆维吾尔自治区阿克苏地区 2020 年环境空气质量数据,本次环 评监测数据符合 3 年时效性要求,可以有效反映拟建项目周围环境质量现状。

新疆维吾尔自治区阿克苏地区 2020 年环境空气质量数据见表 4.4-1。

			7 17 11 11 11 11 11			
	名称	污染物	年评价指标	现状浓度	标准值	超标倍数
		SO_2	年平均质量浓度	7μg/m ³	60μg/m ³	1/2/6
	2	NO ₂	年平均质量浓度	$28\mu g/m^3$	$40\mu g/m^3$)
	阿克苏	СО	24 小时平均第 95 百分位数 质量浓度	1.5mg/m ³	4mg/m ³	
>	地区	O ₃	日最大 8 小时滑动平均第 90 百分位数质量浓度	122μg/m ³	160μg/m ³	
	4	PM ₁₀	年平均质量浓度	95μg/m ³	70μg/m ³	0.36
	1	PM _{2.5}	年平均质量浓度	$39\mu g/m^3$	$35\mu g/m^3$	0.11

表 4.4-1 区域环境空气质量现状评价表

根据环境空气质量模型技术支持服务系统中发布的新疆维吾尔自治区阿克 苏地区 2020 年环境空气质量数据统计结果,SO₂、NO₂年平均质量浓度、CO24 小时平均第 95 百分位数质量浓度、O₃日最大 8 小时滑动平均第 90 百分位数质量浓度值均满足《环境空气质量标准》(GB3095-2012)二级标准及其修改单要求; PM₁₀、PM_{2.5}年平均质量浓度值超标,超标倍数分别为 0.36、0.11,其超标原因与当地气候干燥、风沙较大、易产生扬尘等有密切关系。

环境空气达标区判定结果:本项目位于不达标区,不达标因子为 PM_{10} 、 $PM_{2.5}$ 。

4.4.1.2 其他因子环境质量现状监测

(1) 监测因子

氨、 H_2S 、非甲烷总烃、臭气浓度、TSP。

(2) 监测布点

根据大气环境评价工作等级、功能区分布,同时兼顾项目场地布局、地形特点及当地常年主导风向和均布性原则,在评价范围内布设1个现状监测点。监测布点情况见表 4.3-1 及附图 5。

表 4.3-1 环境空气质量现状监测点一览表

编号 监测点	与厂址相对方位	距离(m)	4/135	监测因子	
1 ☐ 区	4	/4	夏、 H_2S 、	非甲烷总烃、臭气浓度、T	'SP

(3) 监测时间及频次

监测时间:项目进行一期监测,连续监测7天。

监测频次: 氨、 H_2S 监测 1 小时平均浓度,非甲烷总烃、臭气浓度监测一次浓度,每小时至少 45 分钟采样时间,每日监测 4 次,时间为 2:00、8:00、14:00、20:00。

(4) 监测分析方法

采样方法按《环境监测技术规范》(大气部分)进行,监测分析方法按《环境空气质量标准》(GB3095-2012)中表 2 和《空气和废气监测分析方法》(第四版)进行。

(5) 评价标准

《环境空气质量标准》(GB3095-2012)及其修改单中二级标准、《环境影响评价技术导则 大气环境》(HJ2.2-2018) 附录 D 中相关标准。

(6) 评价方法

评价方法采用单项标准指数法,评价模式如下:

$$P_i = \frac{C_i}{C_{oi}}$$

式中: P-i 污染物标准指数;

 C_i —i 污染物实测浓度 mg/m³;

 C_{oi} —i 污染物评价标准值 mg/m^3 。

(7) 监测结果与评价

评价区环境空气质量现状监测结果见表 4.4-2。

				7		10	1	**	1
	表 4.4-2	污染物监测	统计结果一览表						>
	监测项目	监测点位	浓度范围 (mg/m³)	标准值 (mg/m³)	指数范围	超标 率(%)	最大超 标倍数	*****	1
	H ₂ S NH ₃	FE FE	0.005L 0.070~0.084	0.01	0.25 0.35~0.42	0	0		>
A This	非甲烷总烃 TSP	FE FE	0.54~0.85 0.174~0.185	2 0.3	0.27~0.425 0.58~0.62	0	0	7/1/2	
	臭气浓度 注:ND ā	厂区 表示未检出,其标准	11~14(无量纲)	 的一半计算	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	/h.	1
	由上表	可知,H ₂ S、NE 8)附录 D 中相 <i>第</i>	I ₃ 均满足《环	境影响评	价技术导则	1/ //	〔环境》 :放标准		
	详解》中相:	XI I	(加油, 中 中)元	还在例上	11人 (17条件)	少多不 口 1十	- 从 7 7 1 任	***************************************	1
/n.		/s.	4n.	,	/n.	,	/s.	/n.	

由上表可知, H₂S、NH₃ 均满足《环境影响评价技术导则 大气环境》 THE WAR STATE OF THE PARTY OF T (HJ2.2-2018) 附录 D 中相关标准,非甲烷总烃满足《大气污染物综合排放标准 THE STATE WHITE THE STATE OF TH

4.4.2 地下水现状监测与评价

4.4.2.1 地下水水质监测与评价

本次评价于 2022 年 5 月进行一期水质监测,监测层位为浅层水,共布设 3 个水质监测点。

(1) 水质监测点布设

监测井点布设情况见表 4.4-3。

表 4.4-3 调查范围内水质监测井情况表

编号	点位名称	X	Y	井深 m
1#	厂区西北		4/6	
2#	厂区			
3#	厂区东南	-1,405		25

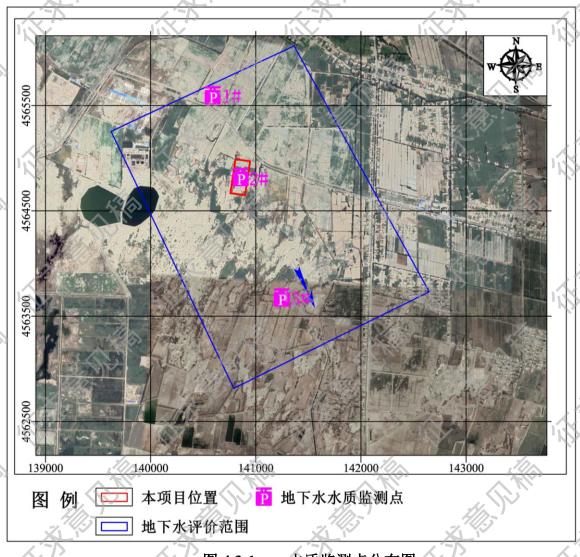


图 4.3-1 水质监测点分布图

(2) 监测因子

 K^+ 、 Na^+ 、 Ca^{2+} 、 Mg^{2+} 、 CO_3^{2-} 、 HCO_3^- 、pH、总硬度、溶解性总固体、硫酸盐、氯化物、铁、锰、铜、锌、挥发性酚类、耗氧量、氨氮、硫化物、硝酸盐(以N 计)、亚硝酸盐(以N 计)、氰化物、氟化物、汞、砷、硒、铅、镉、六价铬、总大肠菌群、菌落总数、总磷。

(3) 监测时段

本次地下水水质监测时间为2022年5月。

(4) 评价方法

根据《环境影响评价技术导则 地下水环境》(HJ610-2016), 水质评价方法采用标准指数法。

①对于评价标准为定值的水质因子, 其标准指数计算公式:

$$P_i = \frac{C_i}{C_{si}}$$

式中:

P_i —第 i 个水质因子的标准指数, 无量纲;

C_i—第 i 个水质因子的监测浓度值, mg/L;

Csi—第 i 个水质因子的标准浓度值, mg/L。

②对于评价标准为区间值的水质因子(如 pH 值), 其标准指数计算公式:

$$P_{pH} = \frac{7.0 - pH}{7.0 - pH_{sd}} \quad pH \le 7$$

$$P_{pH} = \frac{pH - 7.0}{pH - 7.0} \quad pH > 7$$

主中.

P_{pH}—pH 的标准指数,无量纲;

pH—pH 监测值;

pH_{su}—标准中 pH 的上限值;

pH_{sd}—标准中 pH 的下限值。

标准指数 P>1 时,即表明该水质因子已经超过了规定的水质标准,且指数越大,超标越严重。

(5) 评价标准

地下水执行《地下水质量标准》(GB/T14848-2017)Ⅲ类标准,总磷参照执行《地表水环境质量标准》(GB3838-2002)中Ⅲ类标准。

(7) 水质监测结果及评价

HA THE WAR □ ★ 4.4-4 地下水监测与评价结果可以看出: 地下水各监测点中硫酸盐超标, 其余各监测因子均满足地下水环境执行《地下水质量标准》(GB/T14848-2017) Ⅲ类标准,总磷满足《地表水环境质量标准》(GB3838-2002)Ⅲ类标准。 硫酸盐超标主要原因为位于渭干河冲洪积平原中下部,是以双尾及夕尼的 的潜水-承压水含水层为主的细土平原区

N. A.

W.A.

The state of the s

TA TO

THE WAR WITH THE WAR T

		1					13			X	
-//	表 4.4-4	水质监测数	据及标准指数	评价结果	-/	*	<u> </u>				
		监测层位				浅层		4 (0)			
	1/2	监测点名称	1/4	A TI	区西北			K	区东南		-/5/
7/1/5	监测项目	单位	标准值	监测值	标准值数	监测值	标准值数	监测值	标准值数	ž	
(-1)	pН	无量纲	6.5≤PH≤8.5	7.6	0.4	7.5	0.33	7.6	0.4		7
	溶解性总固体	mg/L	1000	967	0.97	967	0.97	952	0.95		,
1.1/	总硬度	mg/L	450	302	0.67	307	0.68	311	0.69		
	耗氧量	mg/L	3.0	1.28	0.42	1.34	0.45	1.39	0.46		
4/17.5	氨氮	mg/L	-0.50	0.207	0.41	0.198	0.40	0.213	0.43		4//
, A T	六价铬	mg/L	0.05	0.004L	***	0.004L	1, 24	0.004L	X-Y		
X/	亚硝酸盐氮	mg/L	1.0	0.003L	/	0.003L	1	0.003L	1		,
* -//	硝酸盐氮	mg/L	20.0	0.08	0.004	0.08	0.004	0.09	0.005		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	总氰化物	mg/L	0.05	0.004L	人类的	0.004L		0.004L	/ 🔏		
	挥发酚	mg/L	0.002	0.0004	0.2	0.0003	0.15	0.0005	0.25		-//
7/1/5	硫酸盐	mg/L	250	433	1.73	423	1.69	357	1.43	×	
(-1)	总大肠菌群	MPN/100mL	3.0	未检出	1	未检出	1	未检出	A DI		7
	细菌总数	CFU/mL	100	55	0.55	61	0.61	53	0.53	1///	
	铁	mg/L	0.3	0.03L	1 200	0.03L	/	0.03L	1 29		
	锰	mg/L	0.1	0.01L	X	0.01L	/	0.01L	1		
405	铅	mg/L	-0.01	0.0068	0.68	0.006	0.6	-0.0067	0.67		-,4//
	镉	mg/L	0.005	0.0021	0.42	0.00209	0.42	0.00336	0.672	, ×	
	锌	mg/L	1.0	0.02L	/	0.02L	1	0.02L	1	1	
		190	190	200				190	29		
	<u> </u>		W. Aller		74			(1) All			
4/175	4/17:		4/115	4/175	4/175	4/175	3	(1)5	4/17.5		4//
X	X. Y	2	Y W	X-Y-Y-	X Y	X	X		X	X	K.
		1	,								/>
	"\"	1/2			-/-				-	- '\'	

铜 mg/L 钠 mg/L 硫化物 mg/L	200	0.01L 173 0.01	0.87 0.50	-4///>-	/ 0.01L 0.87 174 0.50 0.01	0.50	
氟化物 mg/L氯化物 mg/L总磷 mg/L	250	0.88 156 0.15	0.88 0.62 0.75	149	0.86 0.97 0.60 152 0.65 0.14	0.97 0.61 0.7	
			75				

									>>
105 N							Z-1/1/3-)		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	表 4.4-5 水质出	监测数据分析总表	X	Z.	~		\y	V.	N. Y.
	监测点	单位	最大值	最小值	平均值	标准差	检出率(%)	超标率(%)	S)
7/1/25	pH	无量纲	7.6	7.5	7.57	0.0578	100	70/3	Z1 1
	溶解性总固体	mg/L	967	952	962	8.66	100	-70	
	总硬度	mg/L	311	302	306.67	4.51	100	0	
	耗氧量	mg/L	1.39	1.28	1.34	0.06	100	0 3	3)
	氨氮	mg/L	0.213	0.198	0.21	0.008	100	0	
7/1/25	六价铬	mg/L	0.004L	0.004L	75 /	4/15-1	4/0	0//25	-,4/
	亚硝酸盐氮	mg/L	0.003L	0.003L	/ /-	8 /	0	-0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	硝酸盐氮	mg/L	0.09	0.08	0.08	0.006	100	0	
,70	总氰化物	mg/L	0.004L	0.004L	1da	1/02	0	0	
	挥发酚	mg/L	0.0005	0.0003	0.0004	0.0001	100	0	>>
Zin-	硫酸盐	mg/L	433	357	404.33	41.30	100	100	4//
XL,	总大肠菌群	MPN/100mL	1/1/1	/ / 💢			X1.0	70	XL.Y
	细菌总数	CFU/mL	61	53	56.33	4.16	100	0	
*******************	铁	mg/L	0.03L	0.03L		/	0	0	N. S.
	锰	mg/L	0.01L	0.01L	1/2	1,200	0 4	0	
	铅	mg/L	0.0068	0.006	0.007	0.0004	100	0	N
7/1/25	镉	mg/L/-	0.00336	0.00209	0.003	0.0007	100	0(/	7.44
	锌	mg/L	0.02L	0.02L	1	1	0	-10	
	铜	mg/L	0.01L	0.01L	/	/ 1	0	0	
				76					\$\\\\
									N. A.

									, Al
	1/35				(5-1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	监测项目	单位	最大值	最小值	平均值	标准差	检出率(%)	超标率(%)	
-1/1/25	硫化物	mg/L	174	173	173.67	0.58	100	0//	-,4/
	氟化物	mg/L mg/L	0.01	0.01	0.01	0.06	100	0	
	氯化物	mg/L	156	149	152.33	3.51	100	0	
	总磷	mg/L	0.15	0.13	0.14	0.01	100		
				77 77 77 77 77 77 77 77 77 77 77 77 77					

1	监测点	水水化学类型判定表 「区西北 o (B) mg/L c (1/zBz±) meq/L 16.9 0.43	x (1/zBz±) % 3.2%	ρ (B) mg/L 17.6	0.45	c (1/zBz±) meq/L 3.3%	x (1/zBz±) %	厂区东南 ρ (B) mg/I 0.43	β) mg/L 3.1%	
阳离 子 ———	钠(mg/L) 钙(mg/L) 镁(mg/L) 合计 碳酸根(mg/L)	173 7.52 41 2.05 45.7 3.75 276.6 13.75 0 0.00	54.7% 14.9% 27.2% 100.0% 0.0%	174 41 45.6 278.2	7.57 2.05 3.74 13.80 0.00	54.8% 14.9% 27.1% 100.0% 0.0%	174 41 45.6 277.2	7.57 2.05 3.74 13.78 0.00	54.9% 14.9% 27.1% 100.0% 0.0%	
阴离 子	碳酸氢根(mg/L) 硫酸盐(mg/L) 氯化物(mg/L) 合计 水化学类型	102 1.67 433 9.02 156 4.39 691 15.09 Cl-Na • Mg ³	11.1% 59.8% 29.1% 100.0%	115 423 149 687	1.89 8.81 4.20 14.89 SO ₄ •Cl-Na•M	12.7% 59.2% 28.2% 100.0%	166 357 152 675	2.72 7.44 4.28 14.44 SO ₄ •Cl-Na•M	18.8% 51.5% 29.7% 100.0%	
1										
				78						

4.4.2.2 水位调查

本次工作于 2022 年 5 月进行了水位调查工作,共调查水井 6 眼,通过系统资料整理。

表 4.4-7 地下水水位监测情况一览表

				/\///\/		_/\/_//\/
		监测点	京位置	计和	2022	年5月
编号	地点	4///5v	v. 4/17-5	/	水位埋深	水位标高
	LY	Y A	AL IV	(m)	(m)	(m)
SW1	厂区西南			1		10
SW2	厂区	%		/A.		10.
SW3	厂区西北			4(0)		4(0)
SW4	厂区东南		1/2			
SW5	厂区东北	7//5	7//5		Z 7//5	
SW6	厂区西			l'a		
SW7	厂区西南 2		, //			. //>
	SW1 SW2 SW3 SW4 SW5 SW6	SW1 厂区西南 SW2 厂区 SW3 厂区西北 SW4 厂区东南 SW5 厂区东北 SW6 厂区西	编号 地点 SW1 厂区西南 SW2 厂区 SW3 厂区西北 SW4 厂区东南 SW5 厂区东北 SW6 厂区西	SW1 厂区西南 SW2 厂区 SW3 厂区西北 SW4 厂区东南 SW5 厂区东北 SW6 厂区西	编号 地点 X Y 高程 (m) SW1 厂区西南 I SW2 厂区 I SW3 厂区西北 I SW4 厂区东南 I SW5 厂区东北 I SW6 厂区西 I	編号 地点 X Y 高程 (m) 水位埋深 (m) SW1 厂区西南 (m) (m) SW2 厂区 (m) (m) SW3 厂区 (m) (m) SW3 厂区 (m) (m) SW3 厂区 (m) (m) SW4 厂区 (m) (m) SW4 厂区 (m) (m) SW4 厂区 (m) (m) SW4 厂区 (m) (m) SW5 厂区 (m) (m) SW6 厂区 (m) (m) SW7 (m) (m) (m) SW8 (m) (m) (m) SW9 (m) (m) (m) SW9

4.4.3 声环境质量现状与评价

(1) 监测点位

在厂界四周各设1个监测点,共计4个监测点。监测环境噪声。监测布点情况见附图5。

(2) 监测时间及监测频次

监测 1 天, 昼夜各监测一次, 监测分昼间(6: 00~22: 00)和夜间(22: 00~6: 00)进行。

(3) 监测方法

按照《声环境质量标准》(GB3096-2008)中要求的方法进行测量。噪声监测期间无雨、雪天气,符合《环境监测技术规范》第三册(噪声部分)的要求。

(4) 监测因子

等效连续A声级。

(5) 监测结果

噪声现状监测与评价结果见表 4.4-5。

表 4.4-5 声环境现状监测与评价结果一览表

单位: dB(A)

	背景	是值 人	标	性值	评价	结果
监测点名称	昼间	夜间一	昼间	夜间	昼间	夜间
东厂界	53.7	38.5		50	达标	达标
南厂界	47.8	38.7	60	50	达标	达标

					7		
	西厂界	49.2	38.2		达标	达标	<i>\$\langle</i>
A STATE OF THE STA	北广界	50.1	38.8		达标	达标	X
1	由表 4.4-5 可以	人看出,项目区 ^出	或各监测点噪声	值昼间在47.8~	~53.7dB(A	A)之间,	X
In	夜间在 38.2~38.86	dB(A)之间,各	·监测点昼间、d	友间监测值均 滴	肯足《声环	境质量	,

49.2 表 4.4-5 可以看出,项目区域 J在 38.2~38.8dB(A)之间,各监 示准》(GB3096-2008)中的 2 类标准。 A STATE OF THE PARTY OF THE PAR

5 环境影响预测与评价

5.1 施工期环境影响分析

项目建设施工期污染源主要由施工机械噪声、施工扬尘、运输车辆施工机械产生废气、施工废水和建筑垃圾。分析工程施工期的环境影响并提出相应的污染防治措施和管理要求,可使项目建设造成的不利影响降到最低限度。

5.1.1 施工期大气环境影响分析

施工期对环境空气的污染主要为厂区地面平整、运输车辆的行驶、装卸施工材料、施工机械填挖土方以及挖掘弃土临时堆存引起的扬尘。

施工扬尘能使区域内局部环境空气中含尘量增加,并可能随风迁移到周围区域,影响附近居民及单位职工的生活和工作。

施工扬尘主要与施工管理、施工期的气候情况有关,特别是与施工期的风速密切相关。本评价根据施工现场扬尘实测资料,对其进行综合分析。表 5.1-1 和表 5.1-2 列出了北京环科院对不同施工场地扬尘情况的实测数据。

表 5.1-1 某建筑施工工地扬尘监测结果

单位: mg/m³

监测位置	工业上过户 50.1	工地内		工地下风向		夕沙 人
监视师公直	工地上风向 50m	工地內	50m	100m	150m	备注
范围值	0.303~0.328	0.409~0.759	0.434~0.538	0.356~0.465	0.309~0.336	7714FD+0 5
均值	0.317	0.596	0.487	0.390	0.322	平均风速 2.5m/s

表 5.1-2 某施工现场扬尘监测结果

单位: mg/m³

j	距工地距离(m)	10	20	30	40	50	100	备注
	场地未洒水	1.75	1.30	0.78	0.365	0.345	0.330	4 4 5 E E
	场地洒水	0.437	0.350	0.310	0.265	0.250	0.238	春季测量

由表 5.1-1 和表 5.1-2 可以看出,距离施工场地越近,空气中扬尘浓度越大,当风力条件在 2.5m/s 时,150m 以外的环境受影响程度较低。同时也可以看出,施工现场采取场地洒水措施后,可以明显地降低施工场地周围环境空气的粉尘浓度。

(1) 施工扬尘污染防治措施

为有效控制施工期间的扬尘影响,结合建设单位实际情况,本次评价要求建设单位严格执行《关于印发新疆维吾尔自治区大气污染防治行动计划实施方案的通知》(新政发〔2014〕35 号)及《新疆维吾尔自治区重污染天气应急预案》(新政办发〔2017〕108 号)相关文件要求,同时结合《建筑工程施工现场扬尘污染防

治标准》(JJ119-2020)等采取的抑尘措施,对项目施工提出以下扬尘控制要求。 通过采取以下抑尘措施后, 可较大限度的降低施工扬尘对周围环境的影响。

表5.1-3 施工期扬尘污染防治措施一览表

	通过	过采取以下	抑尘措施后,可较大限度的降低施工扬尘对周围:	环境的影响。
	1	施工期扬	尘污染防治措施见表5.1-3。	
200		表5.1-3	施工期扬尘污染防治措施一览表	
day the	序号	防治措施	具体要求	依据
XLIST	,	施工现	在施工现场出入口明显位置设置公示牌,公示施工现	《建筑工程施工现
	11	场公示	场负责人、环保监督员、防尘措施、扬尘监督管理部	场扬尘污染防治标
Y		牌	门、举报投诉电话等信息。	准》(XJJ119-2020)
			①建筑材料采用密闭存储、设置围挡、采用防尘布苫	// 7
	2	密闭苫	盖等措施;	《建筑工程施工现
1/1/25	2	盖措施	②建筑垃圾采用覆盖防尘布、防尘网、定期喷洒抑尘	场扬尘污染防治标
(F)		7	剂、定期喷水压尘等措施。	准》(XJJ119-2020)
	10		①进出工地的物料、渣土、垃圾运输车辆,应尽可能	1/3
11/2		物料运	采用密闭车斗,并保证物料不遗撒外漏。若无密闭车	11 7 to 16 to 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
		输车辆	斗,物料、垃圾、渣土的装载高度不得超过车辆槽帮	《建筑工程施工现
2/10=	3	密闭措	上沿,车斗应用苫布遮盖严实;	场扬尘污染防治标
XL		施	②装卸和运输渣土、砂石、建筑垃圾等易产生扬尘污	准》(XJJ119-2020)
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	染物料的,应当采取完全密闭措施。	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			①遇到干燥、易起尘的土方工程作业时,应辅以洒水	《建筑工程施工现
4			压尘,尽量缩短起尘操作时间,遇到四级及四级以上	场扬尘污染防治标
		洒水抑	大风天气,应停止土方作业,同时作业处覆以防尘网;	准》(XJJ119-2020)
-1.7/1/25	4	尘措施	②施工现场必须建立洒水清抑尘制度,配备洒水设备。	《建筑工程施工现
	/	**	非冰冻期每天洒水不少于2次,并有专人负责。重污染	场扬尘污染防治标
	10	Y	天气时相应增加洒水频次。	准》(XJJ119-2020)
JON.			IV级(蓝色)预警:强化日常检查。	Jun Jun
V. Ho.			Ⅲ级(黄色)预警:环保部门门加大对施工场地、机动车排	7. Kg, 7. Kg,
Alm-		2////	放、工业企业等重点大气污染源的执法检查频次,减	2/10-1
XL		XL	少建筑垃圾、渣土、砂石等散装物料运输车上路行驶。	The Think
		重污染	II级(橙色)预警:区域内50%重点排放企业限产或停产,	《新疆维吾尔自治
Y	5	天气应	停止喷涂粉刷、建筑拆除、切割、土石方等施工作业,	区重污染天气应急
		急预案	建筑垃圾、渣土、砂石等散装物料运输车禁止上路行	预案》(新政办发
			驶(生活垃圾清运车辆除外)。	〔2017〕108号〕
-,7/05		7/1/5	I级(红色)预警:停区域内70%的重点排放企业限产或者	205
**	/	*	停产,停止喷涂粉刷、建筑拆除等施工作业,禁止建筑	8
	10		垃圾、渣土、砂石等散装物料运输车辆上路。	1
100			III. III. III.	1000 1000
W. He.			Kla, 85	7. Kg, 7. Kg,
Z/m=		Alm:	Am	Alma Alma
XL		XL		KIN KIND
(P)				
Y	.//	7		

(2) 机械设备和车辆废气污染防治措施

对机械设备和车辆定期进行检测和保养维修,使其处于良好运行状态;不超过其设计能力超负荷运行;使用满足现行质量标准和环保标准的燃料。

5.1.2 施工期废水影响分析

施工期产生的废水主要为施工设备清洗和水泥养护排水,但水量较小,主要污染物为泥沙,对环境影响较小。施工场地设简易沉淀池,将施工废水收集沉淀后,用于场地喷洒降尘。施工期生活污水一般指施工人员生活和食堂排放的生活污水,设隔油、沉淀池处理后用于场地洒水抑尘。

因此,施工期产生的生产和生活污水不会对区域环境产生明显影响。

5.1.3 施工期噪声影响分析

(1) 噪声源强

施工噪声主要来自于各种施工机械和车辆及推土机、挖掘机、装卸机、基础 阶段的打桩机、和混凝土振捣过程。根据类比调查和资料分析,各类建筑施工机 械产噪值见表 5.1-4。

表 5.1-4 施工机械产噪值一览表

单位: dB(A)

序号	设备名称	声级/距离(dB(A)/m)	序号	设备名称	声级/距离(dB(A)/m)
1	装载机	85.7/5	4	混凝土振捣器	79/5
2	挖掘机	84/5	5	运输车辆	79.2/5
3	推土机	83.6/5	6	夯土机	82/5

(2) 预测计算

本次评价采用点源衰减模式,预测计算声源至受声点的几何发散衰减,计算中不考虑声屏障、空气吸收等衰减。预测公式如下:

Lr=Lro-20lg (r/ro)

式中: Lr——距声源 r 处的 A 声压级, dB (A);

Lro——距声源 ro 处的 A 声压级, dB (A);

r——预测点与声源的距离, m;

ro——监测设备噪声时的距离, m。

利用上述公式,预测计算主要施工机械在不同距离处的衰减值,预测计算结果见表 5.1-5。

不同距离处的噪声贡献值 dB(A) 序号 机械 40m 60m 100m 200m 250m 300m 400m 500m 1 装载机 45.7 67.6 64.1 59.7 53.7 51.7 50.1 47.6 50.0 挖掘机 44.0 2 65.9 62.4 58.0 52.0 48.4 45.9 推土机 65.5 62.0 57.6 51.6 49.6 48.0 45.5 43.6 混凝土振捣器 60.9 57.4 53.0 47.0 45.0 43.4 40.9 39.0 4 5 夯土机 63.9 56.0 50.0 48.0 46.4 43.9 42.0 60.4 运输车辆 61.1 53.2 47.2 43.6 39.2 57.6 45.2 41.1

表 5.1-5 主要施工机械在不同距离处的噪声贡献值

(3) 施工期噪声影响分析

将表 5.1-5 噪声源预测计算结果与《建筑施工厂界环境噪声排放标准》 (GB12523-2011) 相互对照可以看出:

施工期,昼间距工地 40m,夜间 200m 即可满足施工厂界噪声限值的要求

另外,由于工程建设需消耗一定量的沙石等建筑材料,该材料的运输将使通 向工地的公路车流量增加,产生的交通噪声将对运输路线沿途的声环境产生一定 的影响。需采取一些简单可行的降噪措施,对此,本评价提出以下要求和建议:

- (1)建设单位与施工单位签订合同的同时,应要求其使用的主要机械设备 为低噪声机械设备,并在施工中应有专人对其进行保养维护,施工单位应对现场 使用设备的人员进行培训,严格按操作规范使用各类机械。
- (2) 在施工的结构阶段和装修阶段,对建筑物的外部采用围挡,减轻施工 噪声对外环境的影响。
- (3) 建设管理部门应加强对施工工地的噪声管理,施工企业也应对施工噪 声定期进行自查,避免施工噪声扰民。

在采取以上措施的情况下, 对周围声影响较小。

5.1.4 施工期固废影响分析

固体废物包括建筑垃圾和生活垃圾。建筑垃圾主要是施工过程产生的各种废 建筑材料,如碎砖块、水泥块、废木料、工程土等;生活垃圾主要是施工人员的 废弃物品。由于撒落的泥土容易随风飘落到其它地区形成扬尘污染,施工中要加 强对这些固体废物的管理,提出从产生、运输、堆放地点等各环节减少撒落,及 时打扫,避免污染环境;特别在夏季施工时生活垃圾容易腐烂发味,既污染环境; 又可能传播疾病。因此对于生活垃圾应集中堆放及时清理,外运到环卫部门指定 地点, 防止露天长期堆放可能产生的二次污染。

5.2运营期大气环境影响评价

5.2.1常规气象资料分析

A Maria Maria 本工程位于新疆维吾尔自治区阿克苏地区沙雅县境内。本次收集了沙雅县常 年的地面观测数据进行统计分析。

THE TOTAL PROPERTY OF THE PARTY OF THE PARTY

W. A.

N. A.

(1) 风速

A TOP

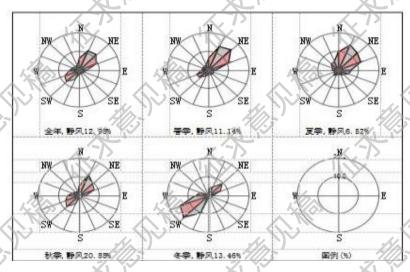
沙雅县气象站近20年的平均风速为1.37m/s,春夏季风速最大,其中以6月份 和7月份风速最大(1.74m/s),以11月份风速最小(1.2m/s),区域各月平均风速 统计见表5.2-1。平均风速的全年各月变化曲线见图5.2-1。

表5.2-1 评价区域近20年各月平均风速统计表

位臵	月份	1月	2月	3月 4月	5月	6月 7月	8月	9月	10月 11月	12月
沙雅县	风速	0.92	1.56	1.56 1.52	1.63	1.73	1.50	1.47	0.93 0.88	1.08

图5.2-1 评价区全年各月风速变化曲线

(2) 风向、风频


大气污染物的传输与扩散受地面风向、风速的影响,风向决定了污染物被输送 的方向以及被污染区域的方位, 而风速的大小则影响大气污染物的扩散稀释速 度。一般在风向频率较大的方位其下风向的轴线区域污染物浓度较大。

沙雅县近20年的各季及全年各风向频率统计情况见表5.2-2,风向频 率玫瑰见图5.2-2。

表5.2-2 沙雅县近20年各月、各季、全年各风向频率

7	THE STATE OF THE S				外			10	**			IN.	N.	.10		K			1
	ulo = d			#D. 17	\			<i>h</i> —								>			•
7/05	表5. 2	2-2	- 沙 春	雅县	近20	年各 夏	·月、	<u>谷李</u>	<u>、全</u> 秋	年各.	风向	频率 冬	XL.		年		7 115	7)	
	项目风向	风向		污染	风向		污染	风向		污染	风向		污染	风向	,	污染			1
/n.	次百八円 一	频率	风速	指数	频率	风速	指数	频率	风速	指数	频率	风速	指数	频率	风速	指数		/n.	
A KID	N		1/1				1/1				3.85				- 17			40	
Z/m	NNE	\ \ \ \							7	7/2 /	5.22			7/			19m		
	XI .				X .				X	1	9.07		X	. 1			XL 135		
				7.3	-			1			6.04					1			1
4	E ESE			2.15							0.82		3.42			2.0	7	1	
	SE					-					1.37	-		2.46		>		4/0)
		-///	/			. //	\rightarrow				1.65				$\overline{}$		1/2		
7/15	S				-, 4	7-7			-, 4	75	1.37			(7.5)			XL 15		
<i>\</i>	SSW										9.89		-						1
	sw			3.68							16.76		Y						
4/0	WSW	6.25	2.69	1.71	2.17	2.18	2.12	7.42	2.16	2.99	14.84	1.99	2.23	7.65	2.25	2.24		40)
	W	2.99	2.03	1.20	3.26	1.95	1.05	6.04	1.87	1.98	6.59	1.62	2.14	4.71	1.84	1.58	4/		
2,405	WNW	2.99	1.81	1.88	3.26	2.20	1.98	3.57	1.72	1.44	4.67	1.35	2.78	3.62	1.80	1.94	7,405	"	
7	NW	2.72	2.83	1.78	5.16	2.62	3.89	2.75	2.05	2.01	1.1	1.58	3.08	2.94	1.36	2.57	75		1
	NNW			4.09	5.16	2.70		,					5.98			5.31			
	С	11.14		-	6.52	-		20.88	-	-	13.46	-	-	12.98	12/0	-		120	>

由图表可以看出,本地区近20年的全年及各季节的风向、风速分布有以下特

沙雅县近20年的各季、全年风向玫瑰图

由近20年的各季、全年风向玫瑰图可以看出:全年盛行以NNE-NE-NNE方 J-NN · Pr.

向的风向,其风向角合计频率达32.04%。全年静风频率为12.98%,其中,秋季最高,20.88%,其次为冬季,为13.46%,夏季最少,为6.52%。

5.2.2大气环境影响分析

(1) 估算因子及评价标准

项目估算因子及评价标准见下表。

表5.2-3 评价因子及评价标准一览表

		N= N1 - 44	X X X X X X X X X X			Land Land
J	页目	〉污染物			单位	标准来源
		20	24 小时平均	150		
,		SO_2	1 小时平均	500		190 190 190
		NO!	24 小时平均	80		Walter Walter Walter
		NO_2	1 小时平均	200	3	105
	1	$-PM_{10}$	24 小时平均	150	μg/m ³	《环境空气质量标准》(GB3095-2012)
1		PM _{2.5}	24 小时平均	75 1		二级标准及其修改单
3	不境	O ₃	日最大8小时平均	160		
2	空气	03	1 小时平均	200		
		CO	24 小时平均	4	mg/m ³	
	X		1 小时平均	10	IIIg/III	45 <u>2</u> 45
		非甲烷总烃	1小时平均	201	ma/m^3	参照执行《大气污染物综合排放标准
			10加工均	2.0	mg/m ³	详解》中相关要求
		NH ₃	1 小时平均	0.2	mg/m ³	《环境影响评价技术导则 大气环
		H_2S	1小时平均	0.01	mg/m ³	境》(HJ2.2-2018) 附录 D 中相关标准

(2) 估算范围及预测计算点

项目评价等级为二级,根据《环境影响评价技术导则 大气环境》 (HJ/T2.2-2018)。

采用《环境影响评价技术导则》大气环境》(HJ/T2.2-2018)附录 A 推荐模型中的 AERSCREEN 模式,计算距项目污染源下向风不同距离处地面空气质量浓度、最大地面空气质量浓度及占标率。

(3) 估算模式及参数

大人

本次大气环境影响评价采用《环境影响评价技术导则 大气环境》(HJ2. 2-2018)所推荐采用的估算模式AERSCREEN,经估算模式可计算出某一污染源对环境空气质量的最大影响程度和影响范围。AERSCREEN 模型大气环境影响预测中的有关参数选取情况见表5.2-4。

	表5.2-4 项目	估算模式参数一	览表		
XL.135	XL, XL	参数	X N	取值	XL 195
	城市/农村选项	城市/农村	- 	农村	
	////	人口数(城市人	、口数)	·	
		不境温度/ ℃ 不境温度/ ℃		41.2 -24.2	
3/1/25	4//>-	2利用类型	7.775	沙漠化荒地	3/105
1	区均		17	干燥气候	7.47
	是否考虑地形	考虑地形	1/1/2/	是	
	7CH 3/H22H	地形数据分辨率		90	
the state of the s	是否考虑海岸线熏烟	考虑海岸线;	7/ 1/4	否	Do. Do.
X III	定口·引达40户汉杰和	海岸线方向	7. 45/	ZL 13	7.45
177	(4)污染源特征	(,)		1111	
			88		

北水原ル湖 估算模式参数取值一览表(点源)

N. A. S.	1		1K		1		1/1					1	N. N.			1K	J. B		1	
14	2	表 5.2-5	估算模式	代参数取值	一览表(点源)	100		da			100			d			11		
		(排气筒底部	邓中心坐标	排气筒底	北左符章	北层營山	烟层沟油	烟气泪的	年排放	排放工	Klin		排放	文 速率	≝ kg/h			(0)	
ZL IS	编号	名称	X	Y	部海拔高 度/m	作「同向 度/m	排气筒出口内径/m	27/2		小时数 /h	况	H_2S	NH ₃	SO_2	NO_2	PM ₁₀	PM _{2.5}	非甲烷 总烃		
	1	锅炉烟气	-124	-135	970.9	15	0.35	14.0	80	2400	连续	1		0.18	0.32	0.05	0.025		1	
*******************	2	污水处理站	-73	-200	972.1	15	0.35	14.4	20	2400	连续	0.0003	0.008			-				V.
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	⊘ 3	化制废气	-108	-88	970.8	15	0.25	17.0	80	2400	连续	0.0005	0.0012]		(A)		0.03		
No.		表 5.2-6	估算模式	代参数 取值	一览表(面源)		<u> </u>			2/2			2/2		~	2		-	
7.745		2,195	面源	(坐标		2.100	与	正北一面》	原有效	×	(1)		Zi	45			Zi	(5)		,

表 5.2-6 估算模式参数取值一览表(面源)

`	2	污水处理站	-73	-200	972.1	15	0.35	14.	4 20	2400	连续	0.0003	0.008 -				4	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3	化制废气	-108	-88	970.8	15	0.25	17.	0 80	2400	连续	0.0005	0.0012 -			0.03		
2/2-10		表 5.2-6	估算模	式参数取值	一览表(面源)			1/2		1/m	N'				2/2	1	2//
X III	编	X (3)	面	源坐标	面源海拔	面源长	面源宽度	与正北	面源有效	年排放	排放丁		污染物料	#放速率/	(kg/h)			ZL.
	号	名称	X	Y	高度/m	度/m	/m	1///	排放高度	小时数/h		1			_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/>		
\ ./\dots	λ,	日本去四	ilno	105	1 /\(\text{\tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex		Źħĸ	(°)	/m			H ₂ S	NH ₃	SO ₂	NO ₂	TSP	6 _A	
	2	屠宰车间 待宰圈	-91 -69	-106 -192	972.2 972.0	178 26.6	61 24.1	7	3.5	2400 2400	连续 连续	0.0015	0.012	0.01	0.006	0.01		
4/11.5	3	污水处理站	-82	-192	971.8	15	12	7	3.3	2400	连续	0.0001	0.002	<u> </u>		40.5		4//
		X-75		X.35		**		4.5		ζ.	3		1		ζ.	7	I	A. Th
	1		1							1		1						
			4/10		4/0		4/10		1//			4/1/0		1/20	>	4		
				25		N.			L. D.				N					N
X_1/15		7/1/5	*	7/1/35		XL!	35"	ίχ	105	>	1/1/25	,	XL i	35	x	405		ZL.
	1		1			A THE						1						
\Y -/n			/n.	X	1/n.	Y	1/n.	X	40	, NY		do.	X	/n.	V	7	/ >.	N.
					4(0)			89	A K			4(0)						
4/115		4/11:)~	4/11-		4/11			4/11/2		4/11=		4//			4/11/2		4//
A. W.		A N		A TO		A.	7	X		, 2	Y IN		A.	7	X	Y Y		A.
X.	1	N.	1	W.	1	S		1/11/		1	,	1	W.		1	1 *		W.

(4) 大气环境影响估算结果

				1K				7	1K		,
					4//			4/10=		4/10:	
X. Y.		环境影响估			XL	5)	X			XLY	
	估算模式预	顶测结果见着	長5.2-7	·	7,7			>	10	X />	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	表5.2-7	有组织废	气污染	物排放信	占算结果	具一览表	(1)		<u></u>		4.
			/		锅炉	烟气)				4(0)
	下风向距离 (m)	SO_2		NC)2	PM	10	PM	2.5		
-1.405	-1405	$C_i(\mu g/m^3)$	Pi(%)	$C_i(\mu g/m^3)$	Pi(%)	$C_i(\mu g/m^3)$	Pi(%)	$C_i(\mu g/m^3)$	Pi(%)	-,4/15	. /
	- 10	1.0445	0.21	1.8569	0.93	0.2901	0.06	0.1451	0.06	*	
	100	2.2104	0.44	3.9296	1.96	0.6140	0.14	0.3070	0.14		
· // // // // // // // // // // // // //	200	1.3282	0.27	2.3612	1.18	0.3689	0.08	0.1845	0.08	Ì	do.
	300	0.7951	0.16	1.4135	0.71	0.2209	0.05	0.1104	0.05]	
	400	0.6678	0.13	1.1872	0.59	0.1855	0.04	0.0928	0.04	1/2	
7,105	-500	0.6516	0.13	1.1583	0.58	0.1810	0.04	0.0905	0.04	-1,4025	
4	600	0.6220	0.12	1.1057	0.55	0.1728	0.04	0.0864	0.04	分	
	700	0.5927	0.12	1.0537	0.53	0.1646	0.04	0.0823	0.04		
/n_	800	0.5679	0.11	1.0096	0.5	0.1577	0.04	0.0789	0.04	1	1/2
	900	0.5477	0.11	0.9736	0.49	0.1521	0.03	0.0761	0.03		V 4 (Q)
	1000	0.5309	0.11	0.9438	0.47	0.1475	0.03	0.0737	0.03	1/2	
3,7/15	-1100	0.5163	0.1	0.9179	0.46	0.1434	0.03	0.0717	0.03	-,705	
(4)	1200	0.5031	0.1	0.8945	0.45	0.1398	0.03	0.0699	0.03	45	
	1300	0.4907	0.1	0.8724	0.44	0.1363	0.03	0.0682	0.03		
. In.	1400	0.4788	0.1	0.8512	0.43	0.1330	0.03	0.0665	0.03	1	100
	1500	0.4672	0.09	0.8306	0.42	0.1298	0.03	0.0649	0.03		
1/4	1600	0.4558	0.09	0.8104	0.41	0.1266	0.03	0.0633	0.03	1/2	
2,705	1700	0.4486	0.09	0.7975	0.4	0.1246	0.03	0.0623	0.03	3,7(1.5)	
(7)	1800	0.4547	0.09	0.8084	0.4	0.1263	0.03	0.0632	0.03	75	
	1000	0.4583	0.09	0.8147	0.41	0.1273	0.03	0.0636	0.03		
.7/2	2000	0.4597	0.09	0.8172	0.41	0.1277	0.03	0.0638	0.03	-	.tn_
1/20	2100	0.4594	0.09	0.8166	0.41	0.1276	0.03	0.0638	0.03		1 4/00
1/2	2200	0.4577	0.09	0.8137	0.41	0.1271	0.03	0.0636	0.03	-//_	
Z.745	2300	0.4549	0.09	0.8087	0.4	0.1264	0.03	0.0632	0.03	2,7//5	
	2400	0.4513	0.09	0.8023	0.4	0.1254	0.03	0.0627	0.03	15	
		0.4470	0.09	0.7946	0.4	0.1242	0.03	0.0621	0.03		
A This Della Service of the service	5000	0.3097	0.06	0.5505	0.28	0.0860	0.02	0.0430	0.02	=	do
V. Klo.	10000	0.1750	0.03	0.3110	0.16	0.0486	0.01	0.0243	0.01		1 Klos
No.	25000	0.0674	0.01	0.1198	0.06	0.0187	0	0.0094	0	19m	
7. 4.5	最大浓度、出现	4.2131	0.84	7.4899	3.74	1.1703	0.26	0.5851	0.26	7/1/25	
(-1)	的距离及占标率	(19m)	(19m)		(19m)	(19m)	(19m)	(19m)	(19m)	(-15)	
\ Y	D _{10%}			'1			17		'1		
					90		3				
	1/1/3			1/2	11/3			,	1/1	7/>	

				***		**	1K		
								5 m	
X 135	表5.2-8 有	组织废气污染	物排放估	算结果一	览表(2)	7,7/5		- XL (5)	
		ヘブ		化制废	气	7)			
	下风向距离(m)	非甲烷总	.烃	Н	I ₂ S	NH	I_3		
290		$C_i(\mu g/m^3)$	Pi(%)	$C_i(\mu g/m^3)$	Pi(%)	$C_i(\mu g/m^3)$	Pi(%)		290
	10	0.2253	0.01	0.0038	0.04	0.0090	0	(1 Klin
4/11=	100	0.4448	0.02	0.0074	0.07	0.0178	0.01	4/17-	
XL	200	0.2442	0.01	0.0041	0.04	0.0098	0	XL	
	300	0.1551	0.01	0.0026	0.03	0.0062	0		
	400	0.1539	0.01	0.0026	0.03	0.0062	0		
1/10	500	0.1457	0.01	0.0024	0.02	0.0058	0		190
	600	0.1365	0.01	0.0023	0.02	0.0055	0		
4/11=	700	0.1284	0.01	0.0021	0.02	0.0051	0	4/17:	
XL	800	0.1216	0.01	0.0020	0.02	0.0049	0	XLY	
	900	0.1159	0.01	0.0019	0.02	0.0046	010		
Y	1000	0.1112	0.01	0.0019	0.02	0.0044	0		
	1100	0.1070	0.01	0.0018	0.02	0.0043	0	1	12/6
	1200	0.1033	0.01	0.0017	0.02	0.0041	0		
4005	1300	0.0999	0.01	0.0017	0.02	0.0041	0	4/175	
X Y		0.0967	0 /	0.0017	0.02	0.0039	0	X. W	
	1400	0.0936	0 1	0.0016	0.02	0.0037	0 1		
Y	1500	0.0930		0.0016					
	1600		0		0.02	0.0037	0	_	
	1700	0.0941	0	0.0016	0.02	0.0038	0	-	
	1800	0.0946	0	0.0016	0.02	0.0038	0	4/175	
X Y	1900	0.0946	0	0.0016	0.02	0.0038	0	XL"	
		0.0943	0	0.0016	0.02	0.0038	0	\ /\'	
, y	2100	0.0937	0	0.0016	0.02	0.0037	0		
4.20	2200	0.0929	0	0.0015	0.02	0.0037	0		4.10
	2300	0.0919	0	0.0015	0.02	0.0037	0		Du.
40.5	2400	0.0908	0	0.0015	0.02	0.0036	0	40.5	7
X	2500	0.0896	0	0.0015	0.01	0.0036	0	A.	
1	5000	0.0602	0	0.0010	0.01	0.0024	0	5/	
·	10000	0.0340	0	0.0006	0.01	0.0014	0		4.
	25000	0.0132	0	0.0002	0	0.0005	0		
	最大浓度、出现的距	0.8193	0.04	0.0136	0.14	0.0327	0.02		
40.5	离及占标率	(18m)	(18m)	(18m)	(18m)	(18m)	(18m)	-,40.5	, /
	D _{10%}	1	/	**	/	*	/	14-11	
	10%	1	10	5	113	/	10	7	
			9			A TOP		- All 5	
			18				1	<i>Y</i>	

		7				7
	A A A A A A A A A A A A A A A A A A A	40				
-4/11-5	表5.2-9 有组织	变气污染物排放	估管结果一览	表(3)	25	- 40.5
, X-1	TOTAL PARTY	Z GJAWIIIAX	污水处			*
	下风向距离 (m)	H ₂ S		NI	H_3	
	200	$C_i(\mu g/m^3)$	Pi(%)	$C_i(\mu g/m^3)$	Pi(%)	100
	10.	0.0022	0.02	0.0599	0.03	
Z/m=	100	0.0057	0.06	0.1510	0.08	4/12
XL	200	0.0031	0.03	0.0826	0.04	XL, S
	300	0.0029	0.03	0.0765	0.04	
	400	0.0026	0.03	0.0688	0.03	,
290	500	0.0023	0.02	0.0618	0.03	200
	600	0.0021	0.02	0.0561	0.03	
4/112	700	0.0019	0.02	0.0515	0.03	2/10=
XL	800	0.0018	0.02	0.0478	0.02	XL
	900	0.0017	0.02	0.0447	0.02	
	1000	0.0016	0.02	0.0421	0.02	,
20	1100	0.0015	0.02	0.0399	0.02	196
		0.0013	0.01	0.0379	0.02	
4/17=	1200	17/2	19/2	- 19		2////>
XL	1300	0.0014	0.01	0.0370	0.02	XL IV
	1400	0.0014	0.01	0.0372	0.02	
	1500	0.0014	0.01	0.0372	0.02	
410	1600	0.0014	0.01	0.0369	0.02	1/16
	1700	0.0014	0.01	0.0366	0.02	
4/17=	1800	0.0014	0.01	0.0361	0.02	2////>
XL	1900	0.0013	0.01	0.0356	0.02	XLI
	2000	0.0013	0.01	0.0350	0.02	
	2100	0.0013	0.01	0.0344	0.02	,
296	2200	0.0013	0.01	0.0338	0.02	200
	2300	0.0012	0.01	0.0332	0.02	A The
4/17=	2400	0.0012	0.01	0.0325	0.02	2/1/2
X	2500	0.0012	0.01	0.0319	0.02	X
	5000	0.0008	0.01	0.0206	0.01	
	10000	0.0004	0	0.0118	0.01	,
40	25000	0.0002	0 4	0.0047	4.00	200
	最大浓度、出现的距离及占					
4/17-	标率	0.0078 (22m)	0.08 (22m)	0.2077 (22m)	0.10 (22m)	4/11=
XL	D _{10%}		XL	XL.		XLY
	D _{10%}	1/5	<u> </u>			
1		*1	Y	, //>	1/0	
290		190	Z.	40	190	200
					(I) Alle	
Am	Alma	4/0=	92	4		4/10=
XLYS	XLY	K K	XL	XL		XLYS
		P	(T)			7
	, KA			1/37	'\	Y

				1K				7	1	***	1
					25%					1/2	
7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	表5.2-10	无组织废	气污染	物排放	估算结	果一览表	(1)	7//5		XL 3	
		1/7			屠宰	车间		5			
	下风向距离(m)	SO_2		NC	\mathbf{D}_2	H_2	2 1/2	NH	[3		
120	13	$C_i(\mu g/m 3)$	Pi(%)	$C_i(\mu g/m^3)$	Pi(%)	$C_i(\mu g/m^3)$	Pi(%)	$C_i(\mu g/m^3)$	Pi(%)	_	190
	10	2.7685	0.55	1.6631	0.83	0.4153	4.15	3.3162	1.66	. <	T. K.
4015	100	4.9013	0.98	2.9443	1.47	0.7352	7.35	5.8710	2.94	4/12	
X	200	4.6728	0.93	2.8070	1.4	0.7009	7.01	5.5973	2.8	X	
	300	3.9662	0.79	2.3826	1.19	0.5949	5.95	4.7509	2.38	S /3	
, i	400	3.3441	0.67	2.0089	1	0.5016	5.02	4.0057	2		1
	500	2.8777	0.58	1.7287	0.86	0.4317	4.32	3.4470	1.72		
	600	2.5180	0.5	1.5126	0.76	0.3777	3.78	3.0162	1.51		
-,405	700	2.3033	0.46	1.3836	0.69	0.3455	3.45	2.7590	1.38	-,403	
1	800	2.1541	0.43	1.2940	0.65	0.3231	3.23	2.5803	1.29	*	
	900	2.0205	0.4	1.2138	0.61	0.3031	13.03	2.4202	1.21	5.	
% .	1000	1.8996	0.38	1.1411	0.57	0.2849	2.85	2.2754	1.14		% .
14/0	1100	1.7910	0.36	1.0759	0.54	0.2687	2.69	2.1453	1.07		
	1200	1.6930	0.34	1.0170	0.51	0.2540	2.54	2.0279	1.01	1/2	
-,405	1300	1.6044	0.32	0.9638	0.48	0.2407	2.41	1.9218	0.96	-,403	
4	1400	1.5240	0.3	0.9155	0.46	0.2286	2.29	1.8255	0.91	**	
	1500	1.4506	0.29	0.8714	0.44	0.2176	2.18	1.7376	0.87		
10.	1600	1.3827	0.28	0.8306	0.42	0.2074	2.07	1.6563	0.83	1	10.
	1700	1.3198	0.26	0.7928	0.4	0.1980	1.98	1.5809	0.79		V 4/0)
	1800	1.2618	0.25	0.7580	0.38	0.1893	1.89	1.5114	0.76	-//_	
	1900	1.2145	0.24	0.7296	0.36	0.1822	1.82	1.4548	0.73	7/1/3	
(F)	2000	1.1645	0.23	0.6995	0.35	0.1747	1.75	1.3949	0.7	75	
		1.1182	0.22	0.6717	0.34	0.1677	1.68	1.3394	0.67		
100	2200	1.0776	0.22	0.6473	0.32	0.1616	1.62	1.2908	0.65	-	100
V. Klo.	2300	1.0402	0.21	0.6249	0.31	0.1560	1.56	1.2460	0.62	1	V. Klo.
Alm-	2400	1.0050	0.2	0.6037	0.3	0.1508	1.51	1.2038	0.6	19m)/
X	2500	0.9719	0.19	0.5838	0.29	0.1458	1.46	1.1642	0.58	XL	
	5000	0.5485	0.11	0.3295	0.16	0.0823	0.82	0.6571	0.33	(7)	
		0.3117	0.06	0.1872	0.09	0.0468	0.47	0.3733	0.19		
190	25000	0.1335	0.03	0.0802	0.04	0.0200	0.2	0.1599	0.08	1	190
	最大浓度、出现	5.0072	1.0	3.0079	1.50	0.7511	7.51	5.9978	3.0	<	
4/11=	的距离及占标率		(125m)	(125m)	(125m)	(125m)	(125m)	1/2	(125m)	Alm:	
	日1年日次日小士	(123111)			181		(123111)	L		XLY	
	D _{10%}	1/2/2/3		<u> </u>	B			·-	10		
					93		NY X				
1				1	1				10		

		, ,			
-14/1/5	表5.2-11	无组织废气污	染物排放估算结果·	一览表 (2)	-405
	7,3,2-11	屠宰车间		一 一 一 一 一 一 一	
N.	下风向距离(m)	TSP			IH ₃
		$C_i(\mu g/m^3)$	Pi(%) C _i (μg/m³)	$Pi(\%)$ $C_i(\mu g/m^3)$	
7 (0)	10	2.7685	0.31 0.3496	3.5 6.9912	3.5
	100	4.9013	0.54 0.2762	2.76 5.5236	
7/25	200	4.6728	0.52 0.1711	1.71 3.4226	1.71
(-1)	300	3.9662	0.44 0.1249	1.25 2.4978	1.25
	400	3.3441	0.37 0.0996	1 1.9916	1
100	500	2.8777	0.32 0.0831	0.83 1.6624	0.83
	600	2.5180	0.28 0.0718	0.72 1.4351	0.72
2/10-	700	2.3033	0.26 0.0636	0.64 1.2726	0.64
XLID	800	2.1541	0.24 0.0563	0.56 1.1269	0.56
	900	2.0205	0.22 0.0503	0.5 1.0067	0.5
	1000	1.8996	0.21 0.0453	0.45 0.9065	0.45
200	1100	1.7910	0.2 0.0411	0.41 0.8220	0.41
		1.6930	0.19 0.0375	0.37 0.7500	0.37
4/175	1200	1.6044	0.19 0.0373	0.34 0.6881	0.34
XL	1300	X	X		0.34
	1400	1.5240		0.32 0.6344	
,	1500	1.4506	0.16 0.0294	0.29 0.5875	0.29
120	1600	1.3827	0.15 0.0273	0.27 0.5462	0.27
Z. Alles	1700	1.3198	0.15 0.0255	0.25 0.5097	0.25
4/115	1800	1.2618	0.14 0.0239	0.24 0.4772	4///>
X Y	1900	1.2145	0.13 0.0224	0.22 0.4481	0.22
	2000	1.1645	0.13 0.0211	0.21 0.4219	0.21
Y	2100	1.1182	0.12 0.0199	0.2 0.3983	0.2
	2200	1.0776	0.12 0.0188	0.19 0.3769	0.19
	2300	1.0402	0.12 0.0179	0.18 0.3574	0.18
401-5	2400	1.0050	0.11 0.0170	0.17 0.3395	0.17
, X-	2500	0.9719	0.11 0.0162	0.16 0.3232	0.16
X.	5000	0.5485	0.06 0.0068	0.07 0.1361	0.07
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10000	0.3117	0.03 0.0028	0.03 0.0555	0.03
	25000	0.1335	0.000 0.0008	0.01 0.0166	4 0.01
	最大浓度、出现的	5 0071 (1254)	0.56	13.3910	6.70
-14/15	距离及占标率	5.0071 (125m)	(125m) 0.6695 $(17m)$	n)6.70 (17m) (17m)	(17m)
**	D _{10%}	1	, 4	45	4
	1	1	1/1/	1	1
			94		
1					

						_1
						13/10
Zin Vi		D'a	2/2			2/2
ZI (IS)	表5.2-12 无组	织废气污染物排	放估算结果一	-览表(3)	ŽĮ ŽĮ	
			污水处	理站	1)
	下风向距离(m)	H_2S	1/12	NH	3	
190	<u>Z</u>	$C_i(\mu g/m^3)$	Pi(%)	$C_i(\mu g/m^3)$	Pi(%)	190
	10	0.6696	6.7	13.3910	6.7	
4/115	100	0.2422	2.42	4.8440	2.42	4/05
X	200	0.1676	1.68	3.3520	1.68	
	300	0.1349	1.35	2.6974	1.35	1
Y	400	0.1115	1.11	2.2298	1.11	
	500	0.0947	0.95	1.8939	0.95	
	600	0.0818	0.82	1.6369	0.82	
405	700	0.0721	0.72	1.4413	0.72	40.5
	800	0.0641	0.64	1.2822	0.64	_i^
7	900	0.0575	0.58	1.1509	0.58	1
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1000	0.0531	0.53	1.0610	0.53	4
	1100	0.0496	0.5	0.9915	0.5	4 (6)
	1200	0.0465	0.46	0.9292	0.46	
-,405	1300	0.0437	0.44	0.8732	0.44	405
	1400	0.0411	0.41	0.8225	0.41	
	1500	0.0389	0.39	0.7772	0.39	1
· ///	1600	0.0369	0.37	0.7376	0.37	1/2
(A)	1700	0.0351	0.35	0.7016	0.35	1 1/0)
	1800	0.0335	0.33	0.6695	0.33	1/2
7,7(15)	1900	0.0321	0.32	0.6410	0.32	7(1)5
(F)	2000	0.0307	0.31	0.6144	0.31	
	2100	0.0295	0.3	0.5907	0.3	
Jan.	2200	0.0284	0.28	0.5686	0.28	JO.
W. Kley	2300	0.0274	0.27	0.5482	0.27	V. Kley
2/10-	2400	0.0265	0.26	0.5296	0.26	4/10=
XL	2500	0.0256	0.26	0.5122	0.26	
(C)	5000	0.0134	0.13	0.2680	0.13	1
	10000	0.0063	0.06	0.1250	0.06	
420	25000	0.0021	0.02	0.0416	0.02	420
	最大浓度、出现的距离及					
4/17.5	占标率	0.4062 (11m)	4.06 (11m)	8.1254 (11m)	4.06 (11m)	4/125
, X-"	D _{10%}	*	14	-, &-	, **	_iv
X,	10	<u> </u>		1/3/	1	1
√	-\/ -\/	√ <u>.</u>	. /	<u></u>	*\\	4
						4 (6)
			95	5 "		
-1405	-1/1/25	-1905	-1/1/5	_,4	25	405
**	1	*	1		· / *	_1
X	100	X				1
		V.	<u></u>		- /-	

本项目废气污染源的正常排放污染物 Pmax 和 D_{10%}估算模型计算结果见图 5.2-1。

表 5.2-13 项目各因子大气环境影响估算模式计算结果

	·AHHEII.					
污染源名称	评价因子	评价标准 (μg/m³)	$C_{\text{max}}(\mu g/m^3)$	P _{max} (%)	D _{10%} (m)	评价等级
7/1/5	SO ₂	500	4.2131	0.84	J. 71/15	三级
担心烟气	NO_X	200	7.4899	3.74	-5-	二级人
锅炉烟气	PM_{10}	450	1.1703	0.26		三级
2	PM _{2.5}	22	0.5851	0.26		三级
	H ₂ S	10	0.0078	0.08	(三级
污水处理站	NH ₃	200	0.2077	0.10	4/15	三级
1	H_2S	10	0.0136	0.14	X-1"	三级
化制废气	NH_3	200	0.0327	0.02		三级
	非甲烷总烃	2000	0.8193	0.04		三级
	TSP	900	5.0071	0.56	^	三级
Zin.	H_2S	10	0.7511	7.51	2/10	二级
屠宰车间	NH ₃	200	5.9978	3.0	ŽL-i	二级
	SO_2	500	5.0072	1.0	[]	二级
	NO_2	200	3.0079	1.50		二级
在 京图	H_2S	10	0.6695	6.70		
待宰圈	NH ₃	200	13.3910	6.70		二级
)=-10 b) 1111 à l	H_2S	10	0.4062	4.06	-14/3	二级
污水处理站	NH ₃	200	8.1254	4.06	*	二级
1 . X	17 . X	1,"				

注: Ci 污染物最大地面浓度; Coi 污染物环境质量标准, Pi 污染物最大地面浓度占标率; D10%地面浓度达标准限值 10%所对应的最远距离。

根据估算结果,本项目 P_{max} 最大值出现为面源排放的 H_2S , C_{max} 为 $0.7511\mu g/m^3$, P_{max} 值为7.51%,占标率均小于10%,因此项目运营后对周围大气环境影响可接受。

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)分级判据,确定本项目大气环境影响评价工作等级为二级。

5.2.3厂界达标排放分析

利用AERSCREEN估算模式计算无组织排放源对东、南、西、北场界外浓度 监控点的贡献浓度,然后进行达标分析。计算结果见表5.2-14。 各污染物厂界监控点浓度贡献值

>= 3± 4bn		17	浓度值	7	(4)	<i>X</i>	
污染物	厂界	屠宰车间	待宰圈	污水处理站	厂界浓度限值	达标情况	
	东厂界	3.1301	196	1/200	1000	达标	
TOD	南厂界	3.9370		4	1000	达标	
TSP	西厂界	3.6795	·	40.7	1000	达标	
A. W.	北厂界	4.7994	, ?	7-	1000	达标	
1	东厂界	3.7494	7.5168	7.6718	1500	达标	
与	南厂界	4.7159	7.5832	10.0034	1500	达标	
氨	西厂界	4.4075	6.0090	4.9208	1500	达标	
Ha.	北厂界	5.7489	2.7126	2.6590	1500	达标	
XLIS	东厂界	0.4695	0.3758	0.3836	60	达标	
戏儿层	南厂界	0.5906	0.3792	0.5002	60	达标	
硫化氢	西厂界	0.5519	0.3005	0.2460	60	达标	
	北厂界	0.7199	0.1356	0.1330	60	达标	
	东厂界	3.1301	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		400	达标	
200	南厂界	3.9370		, H//35-	400	达标	
SO_2	西厂界	3.6795	/	7	400	达标	
	北厂界	4.7994	1		400	达标	
	东厂界	1.8803	Jus.	////	120	/ 达标	
NO.	南厂界	2.3650			120	达标	
NO ₂	西厂界	2.2103	.)~	4/05	120	达标	
X	北厂界	2.8831	, 2	KY.	120	达标	

由估算结果可知,无组织排放颗粒物、 SO_2 、 NO_X 厂界浓度贡献值满足《陆 上石油天然气开采工业大气污染物排放标准》《大气污染物综合排放标准》(GB 16297-1996)表2无组织排放限值要求; H_2S 、 NH_3 厂界浓度贡献值满足《恶臭污 染物排放标准》(GB14554-93)表1新扩改建厂界二级标准值,因此本项目大气环 境影响可接受。

5.2.4大气环境防护距离

(1) 大气环境防护距离

经计算本项目各污染源排放的污染因子均未超标,厂界贡献值满足相应质量 标准、根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)要求,本项目无 需设置大气防护距离

(2) 卫生防护距离

根据.《农副食品加工业卫生防护距离》(GB18078.1-2012)中第1部分:屠宰及 肉类加工业表1卫生防护距离要求如下。

表5.2-15 屠宰及肉类(禽类)加工生产企业卫生防护距离限值

生产规模万头/年	所在地区近五年平均风速 m/s	卫生防护距离 m
	<2	400
≤50	2,4 2,45	300
1	≥4 ∠ →	200
	<2	600
>50, ≤100	2-4	400
	≥ 4	300
40.5	4//25 <2	700
>100	2~4	500
	≥4 1	400

本项目生产规模为30万头/年,所在区域近五年平均风速为1.37m/s<2.0m/s,因此卫生防护距离为400m。

综上所述,项目卫生防护距离为400m,卫生防护距离内不得建设居民区、 学校、医院及其他环境敏感建筑。

5.2.5大气环境影响评价自查表

表5.2-16 建设项目大气环境影响评价自查表

	工作内容				自查项目				
	评价等级	评价等级	一级□	-1/2	二级□		三级☑		
	与范围	评价范围	边长=50km□		边长=5~50k	m□	边长=5km	10	
1		SO ₂ +NOx 排放量	≥2000t/a□	1	500~2000t/s	a□	<500t/a ∠	1	
	评价因子	评价因子	100	基本污染物 (SO ₂ 、NO ₂ 、PM ₁₀ 、PM _{2.5} 、O ₃ 、CO) 其他污染物 (非甲烷总烃、硫化氢)					
	评价标准	评价标准	国家标准☑	地方标准	È□ 附:	录 D☑	其他标准		
	7,7	评价功能区	一类区□	.7.	二类区区		一类区和二类		
	× 45	评价基准年	子'	45	(2019) 年		_ '		
	现状评价	环境空气质量现状 调查数据来源	长期例行监测标	注 主管	部门发布的数	据标准☑	现状补充标准	隹☑	
		现状评价	į	坛标区□		不	达标区☑	2	
	污染源调查	调查内容	本项目正常排放 本项目非正常排放 现有污染源□	女源☑ 拟替	代的污染源 📗	其他在建、 建项目污染	拟源 区域污染	 }源□	
	大气环境 影响预测	预测模型	AERMOD ADMS	AUSTAL200 □	0 EDMS/AED	CALPUF	FF 网格模型	其他	

		1/2					ı́γ		1
				<i></i>		\			
15	与评价	工作内容 预测范围	边长≥501	- XI i i	自查项目 边长:	5~50km□	边长=5km□	14/15	
		预测因子	/	则因子()	A.	包括二次	次 PM _{2.5} 口		1
		正常排放短期 浓度贡献值	C本项目最	是大占标率≤100°	%□	>	占标率>100%□		
A 195	XX	正常排放年均 浓度贡献值 非正常 lh 浓度	二类区	C 本项目最大占标		X(占标率>10%□ 占标率>30%□	47/05	1
	, ()	示正常 In 浓度 贡献值 保证率日平均	非正常持续时长 () h	C _{非正常} 占标率	≦≤100%□	C _{非正常} 占杨	示率>100%□	- 4	
	-,7	浓度和年平均 浓度叠加值	C 叠)	加达标口		C 叠加不	达标。		
		区域环境质量的整 体变化情况	k≤-	20%		k>-20%	%o		1
	环境监测 计划	污染源监测	监测因子: 《非日	甲烷总烃、硫化	氢)	组织废气监测□ 组织废气监测 ☑	- 无监测□		
4/115	11 20	环境质量监测 环境影响	监测因子	: () 可以接受 ☑	监	测点位数() 不可以接受□	无监测☑	4/1/5	
	评价结论	大气环境防护距离	SO ₂ : 0.000t/a	距 () NOx: 0.000t/a	厂界最远 非甲烷总	() m	化氢: 0.0003t/a		1
Jn.	注:"□",		内容填写项		1		1/2		

5.3 水环境影响分析

5.3.1 地表水环境影响分析

项目锅炉系统排水及循环水系统排水用于厂区泼洒抑尘; 项目屠宰废水、车 辆冲洗废水、检疫检验废水及职工生活污水经厂内污水处理站处理后排至沙雅县 污水处理厂处理,污水处理站采用"预处理+缺氧好氧+MBR+消毒"处理工艺, 满足《肉类加工工业水污染物排放标准》(GB13457-92)表 3 三级标准、《屠宰 及肉类加工工业水污染物排放标准》(二次征求意见稿)表3特别排放限值间接 排放限值及沙雅县污水处理厂进水水质要求后,最终排入沙雅县污水处理厂进行 深度处理。

沙雅县污水处理厂位于沙雅县城西南方向, 服务范围为沙雅县和工业园区, 处理对象为服务范围内的生活污水和工业废水,沙雅县污水处理厂工艺采用污水 处理采用"吸附混凝沉淀-厌氧水解好氧处理"工艺流程,沙雅县兴雅污水处理 有限责任公司 2008 年获得环评批复,2009 年开始建设,设计总规模为 10 万 m2/d,

工程建设分 3 期实施。至 2008 年 7 月肥建成 2 万 t/d 的处理规模, 2018 年建成 2 一定医区分 3 期实施。至 2008 年 7 月肥建成 2 万 t/d 的处理规模,2018 年建成 2 万 t/d,目前沙雅县污水处理厂规模为 4 万 t/d。排污许可证证书编号:91652924568868945T001Q。沙雅县污染处理厂已进行提标改造,工艺为"户广催化氧化+硝化+反硝化+滤布过滤+消毒+污泥工"。《城镇污水外理厂工》

量为 294.2m³/d, 在污水处理厂处理负荷余量范围内,能够满足本项目生产需求。

	12 3.3-1			· / / / / / / / / / / / / / / / / / /	ЩИСИС	火 又 八	<i>y</i> c1X	 			(0)
-	项目	pН	COD	NH ₃ -N	BOD ₅	SS	总氮	总磷	动植物油		
	进水水质	6.5~9.5	500	45	350	400	70	8///	100		
	出水水质	6~9	50	5(8)	10	10	15	0.5	1		
	注: 括号外	数值为水温	4>12℃时的控	控制指标,	括号内数值	直为水温<	≤12℃时的	7控制指标	1		1
	综上所述	述,项目	废水不直挂	妾外排力	〈体,对	周边地	表水环	境影响很	小。		
	. <	I Klin		J. Kliv			Klin	. <	1 Kill		
	-,4/15		-,4/15		-1.	405		-,405		-14/135	
	X.75				×.*	_1		**		X.35	
	综上所	1	废水不且?		体,对		1K	境影响很	1		1
		1/2/25		190		5			12/05		
									19 m		
	3,405	/	- HIS	, /	7,	4/15		-,405	- /	3,405	
	1	1	1		1. The	-		75		1	
							Ί,				. 1
		4///				5			4//0		
	1/2		4/			1		1/2			
	7/1/5	"	7/1/3		Zi	105		ZL S	*	XL 135	
		1					110		1		1
/.	, (1)	· .		1.			* K		- J.		
						5					
*	Z/m		Ho.			2/2		Z/m.			
	X		XL		ĮŽĮ.	7(1.5)		XLIS		XLIST	
		1					li		1		1
۵.		<i>1</i> 0.		/n.	1/2		dr.		/n.	/ /	٨.
		4/0	/	14/0					A KIDS		
	Z/m-		Mn-		100	2/10-1)	ZIm-		2/2-10	
	XI.		X (3)		X			XL Y		XL (3)	
		1					IN		1		1
	./		- 1				- 17	1		- /	

5.3.2 地下水环境影响预测与评价

5.3.2.1 评价区水文地质条件

(1) 包气带岩性

本次评价收集了厂区岩土工程勘查报告,根据报告中内容:拟建场地地貌单 元属冲洪积平原中下游地带,原为沙丘地带,地势起伏较大。在本次勘探深度 16.00m 范围内, 场地土的构成主要为耕土、粉砂、粉质黏土、细砂。

现将土层的特性描述如下:

第①层 耕土: 褐黄色, 层厚 0.50~1.50m, 平均厚度约 0.74。以粉砂为主, 含植物根系。

第2-1 层 粉砂: 黄褐色, 层顶埋深 0.50~1.50m, 层厚 0.50~2.10m, 平均 厚度 1.09m, 该层水平向分布不连续, 局部缺失, 颗粒大小均匀, 矿物组成主要 以石英、云母、长石为主,夹有粉砂、粉土及粉质黏土薄层或透镜体,厚度约 $0.15 \sim 0.25 \text{m}$

第②层 粉质黏土: 棕褐色, 层顶埋深 0.50~3.10m, 层厚 0.90~4.90m, 平 均厚度 2.18m, 摇振反应无, 稍有光泽反应, 干强度中等, 韧性中等, 夹有粉砂 及粉土薄层,呈透镜体状,厚度约0.25~0.45m。

第2-2 层 粉砂: 灰褐色, 层顶埋深 1.80~5.40m, 层厚 0.20~1.50m, 平均 厚度 0.98m, 该层在粉质粘土层中部层位出露, 水平向分布不连续, 局部缺失, 颗粒大小均匀,矿物组成主要以石英、云母、长石为主,夹有粉砂、粉土及粉质 黏土薄层或透镜体,厚度约 0.25~0.35m。

第③层 细砂:灰褐色,层顶埋深 4.10~7.50m,本次勘察未揭穿该层,最大 可见厚度为 11.30m, 颗粒大小均匀, 矿物组成主要以石英、云母、长石为主, 夹有粉砂、粉土及粉质黏土薄层或透镜体。

	4 3 杜 4 4		
工程名称 医克苏地区沙雅县	新 扎 枉 从 图	第1页共1	
工程编号 XYKC-2022-C 孔口高程(n) 97.23 坐 孔口直径(mm) 127.00 标	7029 钻孔编号 29 X = 39759.04 开工日期 X = 4556769.67 竣工日期	稳定水位深度(m) 2.80 测量水位日期	
地 层 层 层 层 层 层 层 层 层 扇	岩土名称及其特征	取 标贯 动探 ^{粮皮未住} (a) 击数 击数 (击) (击)	
2) ₁ 95.730 1.50 f 2) 94.130 3.10	根系。 粉砂:黄褐;松散;干-稍湿;颗粒大小均匀,矿物组成主要以石英、云母、长石为主,夹有粉土及粉质黏土薄层或透镜体,厚度约0.15~0.20m。 粉质黏土:棕褐;稍湿-湿;可塑;摇振反应无	=7.00 1, 15-1, 45 =4.00 2, 15-2, 45 =7.00 3, 15-3, 45	
②₂ f 92.730 4.50 I 2 91.130 6.10	,稍有光泽反应,干强度中等,韧性中等 ,夹有粉砂及粉土薄层,呈透镜体状,厚度 约0.25~0.45m。 粉砂:灰褐:松散-稍密;湿-饱和;颗粒大小均匀,矿物组成主要以石英、云母、长石为主 ,夹有粉土及粉质黏土薄层或透镜体,厚度 约0.25~0.35m。	=6.00 4.15-4.45 =6.00 5.15-5.45 =11.00 6.15-6.45	
	粉质黏土:棕褐:稍湿-湿;可塑;摇振反应无 ,稍有光泽反应、干强度中等,韧性中等 ,夹有粉砂及粉土薄层,呈透镜体状,厚度 約0.25~0.45m。 细砂:灰褐:稍密-中密;饱和;颗粒大小均匀 ,矿物组成主要以石英、云母、长石为主 ,夹有粉砂、粉土及粉质黏土薄层或透镜体。	=11.00 7.15-7.45 =12.00 8.15-8.45 =13.00 9.15-9.45 =15.00 10.15-10.45	
		10. 15-10. 45 =16. 00 11. 15-11. 45 =16. 00 12. 15-12. 45 =18. 00 13. 15-13. 45	
81. 230 16.00		=19,00 14,15-14,45 =21,00 15,15-15,45	
工程编号 XYKC-2022-C029	图 5.3-1 厂区钻子	多 图号 15 周期 2022.3 上柱状图	
	102		

厂区钻孔柱状图 图 5.3-1 **术图**

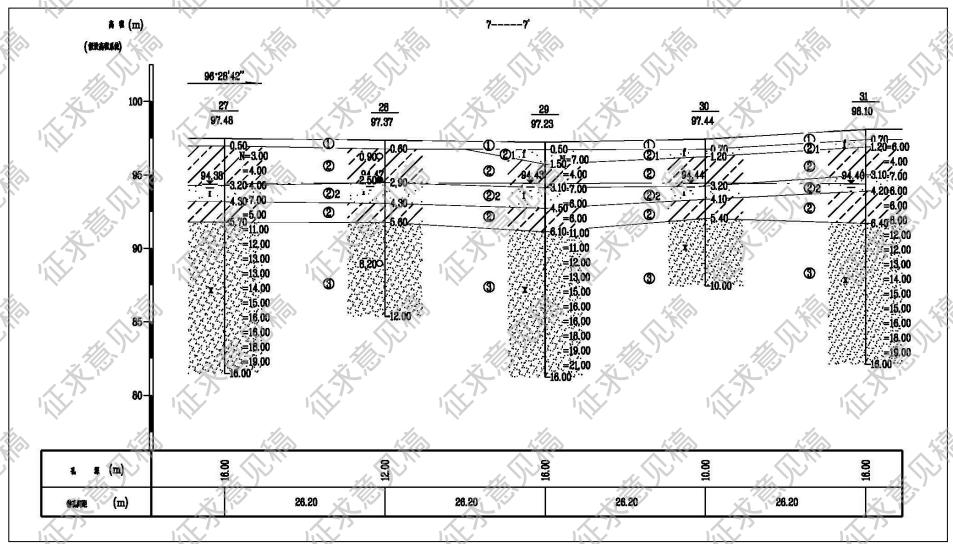


图 5.3-2 厂区地质剖面图

(2) 地下水类型与含水岩组富水性

本项目位于位于渭干河冲洪积细土平原上,按含水介质划分,调查区仅分布 有第四系松散岩类孔隙潜水。

潜水含水层的岩性主要为第四系全新统洪积的细砂,其次为中砂和粉砂。其中细砂层数较多,单层厚度一般在 3-23m,单层最大厚度达 30.15m,粉细砂总厚度在 40-57m,南向北厚度逐渐变薄。中砂单层厚度在一般在 1.1-3.2m,岩层顶板在 5m 和 22m。粉砂只分布有 1-2 层,分布在 10-40m 之间,单层厚度一般在 1.8-3.2m,最大厚度 9.85m,分布无规律性,呈透镜体状。

本区分布的潜水含水层,潜水位埋深约 1.77-4.73m,钻孔揭露的含水层厚度约 37-55m,换 算 涌 水 量 为 352.4-969.89m³ /d, 水 量 中 等; 渗 透 系 数 1.016-2.877m/d。

(3) 地下水补、径、排条件

调查区地下水的补给主要来源于西北部地下水侧向补给,从地下水等水位线图可以看出,地下水主流动方向由北西向南东径流。地下水的补给由北部的山前侧向径流补给、渠道渗漏补给、农田灌溉回渗补给等。排泄以蒸发、人工开采和向下游侧向径流排泄为主。

①地下水的补给

调查区位于渭干河冲洪积平原南部的缓倾斜平原区,地下水的补给来源主要来源于以下几方面:东北部地下水的侧向补给、引水渠系渗漏补给、田间灌溉入渗补给。

②地下水的径流

地下水的迳流方向总体上是由北西向南东方向,最终迳流至塔里木河。在调查区地层岩性以第四系的粉细砂为主占 90%,其次为细砂占 10%左右。地层的岩性颗粒较细,地下水的水力坡度由北向南,从 0.82‰过度到 0.44‰,地下水的径流条件一般。

③地下水的排泄

地下水从调查区向塔里木河迳流,最后排向塔里木河。由于调查区无外流水系,因此,地下水的排泄以蒸发排泄、人工开采排泄和侧向流出为主。

(4) 地下水动态特征

由于调查区位于渭干河冲洪积扇下部,通过地下水水位动态变化曲线分析,

区内地下水动态类型为渗入-蒸发型,动态曲线为多峰型。地下水水温变化不大, 沙漠 应內地下水动态类型为渗入-蒸发型,动态曲线为多峰型。地下水水温变化不大,在 14.0℃-17.0℃之间。含水层岩性为细砂、粉细砂,水动力条件差,水力坡度由 0.82‰变为 0.44‰。动态曲线呈现为多峰型:每年 1-2 月地下水处于低水位即 3 月份水位开始上升,至 4 月-5 月达到最高值,之后水位于 由于强烈的蒸发、蒸腾作用,水位畋士 受冬灌影响。 工 A STATE OF THE STA 受冬灌影响,于 11-12 月形成另一峰值,一般在次年 1-2 月达到最低水位。

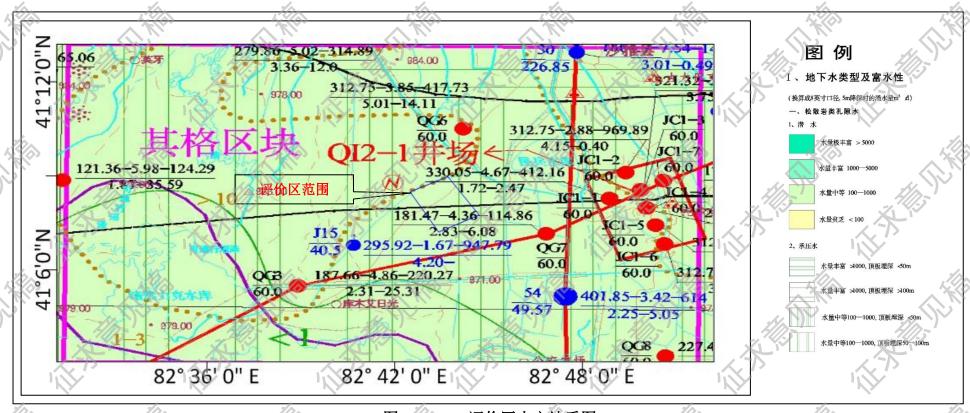
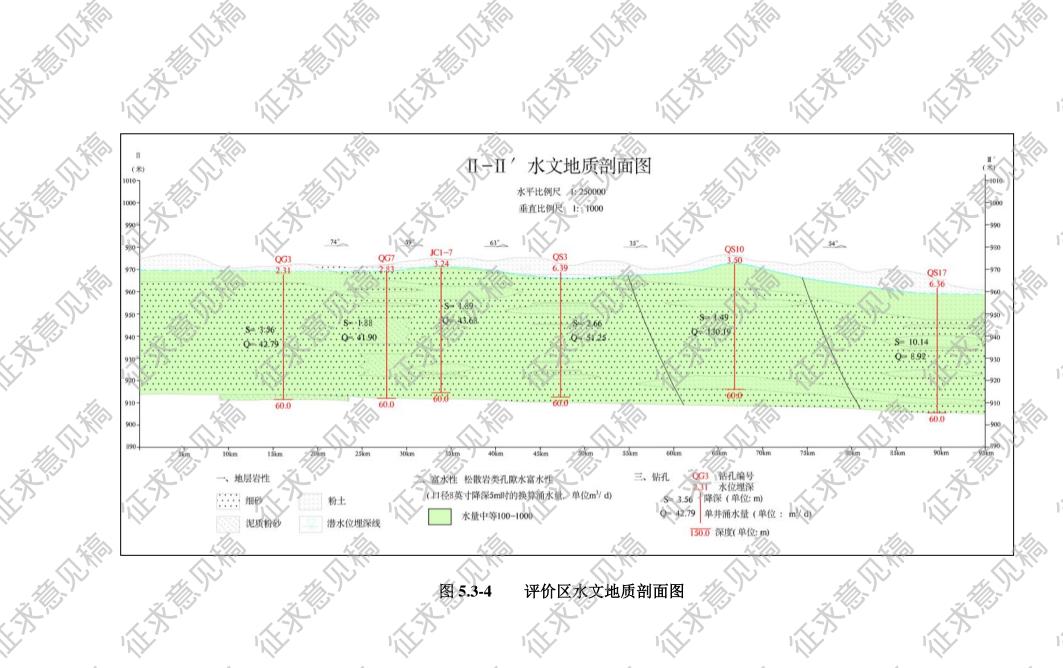



图 5.3-3 评价区水文地质图

评价区水文地质剖面图

(5) 水文地质参数

根据评价区水文地质条件可知,潜水含水层的岩性主要为第四系全新统洪积的细砂,其次为中砂和粉砂。其中细砂层数较多,因此并结合周围区域相关抽水实验数据,渗透系数取 5.0m/d,给水度取 0.21。

5.3.2.2 地下水环境影响预测与评价

按《环境影响评价技术导则 地下水环境》(HJ610-2016)相关要求,本项目地下水环境影响评价级别为三级,根据建设项目自身性质及其对地下水环境影响的特点,为预测和评价建设项目投产后对地下水环境可能造成的影响和危害,并针对这种影响和危害提出防治对策,从而达到预防与控制环境恶化,保护地下水环境的目的。

(1) 地下水污染预测情景设定

本次模拟预测,在选定优先控制污染物的基础上,分别对地下水污染物在不同时段的运移距离、超标范围进行模拟预测,预测情景主要分为正常状况、非正常状况两种情景。

①正常状况

项目废水包括屠宰废水、车辆清洗废水、检疫检验废水和生活污水经厂区污水处理站处理后,排入沙雅县污水处理厂进行深度处理;锅炉系统排水、循环水系统排水用于厂区泼洒抑尘。厂区构筑物均进行了地面防渗、防腐处理,一般不会对地下水产生影响。因此在正常状况下,污染物从源头和末端均得到控制,没有污染地下水的通道,基本不会对地下水产生影响。

②非正常状况下

根据工程分析内容,厂区内对地下水环境产生威胁的主要为厂区污水处理站,因此本次选取厂区污水处理站调节池作为预测点,主要考虑调节池防渗措施因系统老化、腐蚀等原因不能起到正常保护效果下对地下水环境的影响。

(2) 预测因子确定

本次地下水预测因子采用标准指数法排序,选取耗氧量、总磷作为特征污染物进行模拟,详见表 5.3-2。

表 5.3-2 废水主要成分标准指数表(仅选取有标准的因子)

污染物名称	污染物浓度	标准指数
COD	300.4mg/L	100.13
氨氮	34mg/L	68
总磷	3.0mg/L	150
总大肠菌群	3000个/L	100

(3) 污染预测模型概化及建立

①污染预测模型的概化

在非正常状况情景下,污染物运移概化为污染物直接进入潜水含水层,然后污染物在潜水含水层中随着水流不断扩散。故本次模型可概化为一维稳定流动二维水动力弥散问题的注入示踪剂—平面连续点源的预测模型,其主要假设条件为:

- a、假定含水层等厚、均质,并在平面无限分布,含水层的厚度、宽度和长度相比可忽略:
 - b、假定定量的定浓度的污水,在一定时间内注入整个含水层的厚度范围;
 - c、污水的注入对含水层内的天然流场不产生影响。

污染物在含水层的情况可以概化为示踪剂(污染物离子)连续注入的一维稳 定流动二维水动力弥散问题,取平行水流方向为 x 轴。

②污染预测模型的建立

根据《环境影响评价技术导则 地下水环境》(HJ610-2016),一维稳定流动二维水动力弥散问题的连续注入示踪剂—平面连续点源的预测模型为:

$$C(x, y, t) = \frac{m_t}{4\pi M n_e \sqrt{D_L D_T}} e^{\frac{xu}{2D_L}} \left[2K_0(\beta) - W(\frac{u^2 t}{4D_L}, \beta) \right]$$

$$\beta = \sqrt{\frac{u^2 x^2}{4D_L^2} + \frac{u^2 y^2}{4D_L D_T}}$$

式中: x,y-计算点处的位置坐标;

t一时间, d;

C(x, y,t)—t 时刻点 x,y 处的示踪剂浓度, g/L;

M一含水层的厚度, m;

m_t一单位时间注入示踪剂的质量, kg/d;

u一水流速度,m/d;

n-有效孔隙度, 无量纲;

 D_L 一纵向弥散系数, m^2/d ;

 D_T 一横向 y 方向的弥散系数, m^2/d ;

 π — 圆周率;

 $K_0(\beta)$ 一第二类零阶修正贝塞尔函数;

$$\mathbb{W}\left(\frac{\mathrm{u}^2\mathrm{t}}{4\,\mathrm{D_L}},\boldsymbol{\beta}\right)$$
一第一类越流系统并函数。

③模型参数的选取

利用所选取的污染物迁移模型,能否达到对污染物迁移过程的合理预测,关键就在于模型参数的选取和确定是否正确合理。

- a、污染物泄漏质量:场地有防渗,污水正常跑冒、渗漏情景下根据《给水排水构筑物工程施工及验收规范》(GB50141)的相关规定,钢筋混凝土结构水池渗水量不得超过 2L/(m²d),非正常状况下泄漏量按正常状况下渗漏量 10 倍计算,假设泄漏的污染物全部进入含水层中,即 5.16m³/d。
 - b、泄漏时间:水质监控井监测频次为2次/年,因此泄漏时间设定为180d。
 - c、含水层的厚度 M: 取含水层平均厚度 46m。
 - d、有效孔隙度: 有效孔隙度 n: 取 n=0.21;
- e、水流实际平均流速 u: 地下水含水层渗透系数取经验值为 5.0m/d。水力坡度 I 取 0.5‰。因此地下水的渗透流速 u=K×I/n=5.0m/d×0.5‰/0.21=0.0119m/d。
- f、纵向 x 方向的弥散系数 D_L : 含水层纵向弥散度 $\alpha_L=10$ m,由此计算项目含水层中的纵向弥散系数 $D_{L=}\alpha_I \times u=10 \times 0.0119$ m/d=0.119m²/d;
- g、横向 y 方向的弥散系数 D_T : 根据经验一般, α_T =0.1× α_L ,因此 α_T =1m,则横向弥散系数 D_T = α_T ×u=0.0119 m^2 /d;

(4) 预测结果分析

将前面确定的的参数代入模型公式,便可以求出不同层位,任何时刻的污染物的浓度;废水瞬时进入含水层的一维稳定流动二维水动力弥散问题,当取平行地下水流动的方向为 x 轴正方向时,则可利用模型求取污染物的浓度;将确定的的参数代入模型,便可以求出潜水含水层不同位置,任何时刻的污染物的浓度分布情况。污染晕红色区域为超标范围,蓝色污染晕为影响范围。

①耗氧量预测结果

非正常状况下污水处理站调节池发生泄漏,预测结果表明,耗氧量超标污染

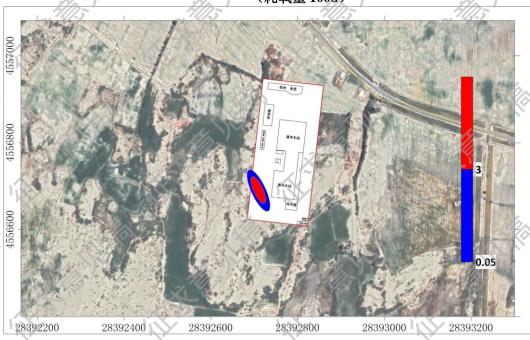

晕运移最大距离为 42m,超标范围最大为 1105m²,耗氧量超标污染晕在 7300d 内未运移出厂界,不会影响地下水敏感目标。

表 5.3-3 耗氧量预测结果统计表

污染时	超标范围运移	超标范围	影响范围	超标范围超出厂界
间 100d	距离 (m) 11	(m²)	(m²) 271	距离 (m)
1000d	42	1105	2681	2 9 0
7300d	0	0	13122	0

(耗氧量 100d)

(耗氧量 1000d)

(耗氧量 7300d)

非正常状况下耗氧量各时段运移结果图 图 5.3-5

②总磷预测结果

非正常状况下污水处理站发生泄漏,预测结果表明,总磷超标污染晕运移最 大距离为 37m, 超标范围最大为 835m3, 总磷超标污染晕在 7300d 内未运移出厂 界,不会影响地下水敏感目标。

表 5.3-4 总磷预测结果统计表

-/-	•				
>2	污染时	超标范围运移	超标范围	影响范围	超标范围超出厂界
	间	距离(m)	(m^2)	(m^2)	距离 (m)
	100d	9	85	192	0
	1000d	37	835	1928	0
	7300d	0	0	6680	0
	_,4			- 40.5	- 40.5
			N IN	为心	*
		200		100	Z/O

(总磷 100d)

(总磷 1000d)

NIX.

图 5.3-6 非正常状况下总磷各时段运移结果图

5.3.2.3 地下水污染防治措施

地下水环境影响预测和评价结果显示,在没有适当的地下水保护管理措施的情况下,拟建工程对其下游的地下水环境会产生一定影响。为确保地下水环境和水质安全,需采取适当的管理和保护措施。

在制定该项目工程的地下水环境保护管理措施时,遵循以下原则:

- ①预防为主、标本兼治;
- ②源头控制、分区防治、污染监控、应急响应;
- ③充分合理预见和考虑突发重大事故;
- ④优先考虑项目可研阶段提出的各项环保措施,并针对地下水环境保护目标进行改进和完善;
 - ⑤新补充措施应注重其有效性、可操作性、经济性、适用性。

(1) 源头控制措施

对产生的废水进行合理的治理和综合利用,以先进工艺、管道、设备、污废水储存,尽可能从源头上减少可能污染物产生;严格按照国家相关规范要求,对污水储存及处理构筑物采取相应的措施,以防止和降低可能污染物的跑、冒、滴、漏,将废水泄漏的环境风险事故降低到最低程度;优化排水系统设计,初期污染雨水等在场区内收集后通过管线送厂污水处理站处理;管线铺设尽量采用"可视化"原则,即管道尽可能地上铺设,做到污染物"早发现、早处理",以减少可能

造成的地下水污染。

- (2) 分区防控措施
- 1)污染控制难易程度分级和天然包气带防污性能分级,参照《环境影响评价技术导则 地下水环境》(HJ610-2016)中相关依据确定。

表 5.3-5 污染控制难易程度分级参照表

污染控制难易程度	-,405	主要特征	-,705
难	对地下水环境有污染	的物料或污染物泄漏后	,不能及时发现和处理
易	对地下水环境有污染	的的污染物泄漏后, 可	及时发现和处理。

100

- 30 -							
_	分级		包生	(带岩土的)	参透性能		
	强	岩(土)层单	层厚度 Mb≥1.0m,	渗透系数	$K \le 1 \times 10^{-6} \text{cm/s}$	且分布连续、	稳定。
		岩(土)层单	层厚度 0.5m≤Mb<	<1.0m,渗i	透系数 K≤1×10	J ⁻⁶ cm/s,且分 ⁷	布连续、
	1 4	稳定。岩(土	层单层厚度 Mb≥	<u>·</u> 1.0m,渗透	医系数 1×10 ⁻⁶ cm	$\sqrt{s} < K \le 1 \times 10^{-4}$	cm/s,且
		分布连续、稳	定。		-/-		-\'
>	弱	岩(土)层不	满足上述"强"和"中	口"条件。	A (10)	_ \\	

根据《环境影响评价技术导则 地下水环境》(HJ610-2016)包气带防污性能评价标准和钻孔柱状图可知,包气带以粉砂为主,渗透系数 $\mathbf{K} \ge 1.0 \times 10^4 \mathrm{cm/s}$,。防污性能为"弱"。

- 2) 本项目主要装置区污染控制难易程度不同。
- 3)《环境影响评价技术导则 地下水环境》(HJ610-2016)表7中,对建设项目场地地下水污染分区防渗技术的具体要求,见表5.3-7。

表 5.3-7 地下水污染防渗分区参照表

防渗分区	天然包气带 防污性能	污染控制 难易程度	污染物类型	防渗技术要求
重点防渗区	弱中-强	易-难	重金属、持久性有机 物污染物	等效黏土防渗层 Mb≥6.0m,K≤1×10 ⁻⁷ cm/s; 或参照 GB 18598 执行
,你吃完全豆	中-强	易	重金属、持久性有机 物污染物	等效黏土防渗 Mb≥1.5m, K≤1×10 ⁻⁷ cm/s;或参考 GB
一般防渗区	弱 易-难 中-强 难	其他类型	K≤1×10 cm/s; 或参考 GB 16889 执行	
简单防渗区	中-强	易	其他类型	一般地面硬化

对照表 5.3-7 本项目区域防渗分区如下, 防渗分区图见图 5.3-7。

				1			1
	表 5.3-8	防渗分区及防渗防	薩亜水一場	表			
3,405	防渗级别	防渗区域		{//-}}	沙井子西北		25
(4)	的珍级剂	/ 5	T 10 15 //.		渗技术要求	7	
	重点防渗区	污水处理站各水池的底板 制间、废弃物间			防渗层 Mb≥6.0m 或参照 GB 1859	N	1
40		屠宰车间地面、待宰圈地)	7/7.	上防渗 Mb≥1.5m,	>_	190
	一般防渗区	地面	Щ (ЛІ ДХІ-)		或参考 GB 1688	*	
7/05	简单防渗区	速冻库、成品冷库、	锅炉房	////	般地面硬化	-,4/	25
				1			1
	7/1/15						
			116				

HA THE WAR KT NATURE OF THE PARTY OF THE P W.T.

THE TOTAL PROPERTY OF THE PARTY OF THE PARTY

- ②以主要受影响含水层为主;

项目调查与评价区范围内浅层地下水由西南向东北流动,根据《环境影响评 支术导则 地下水环境》(HJ 610-2016)及《地下水环境监测技术规范》(HJ164 920)的要求及地下水监测点布设原则,因附证却引力。 泛层水为主要证据 价技术导则 地下水环境》(HJ 610-2016)及《地下水环境监测技术规范》(HJ164 一2020)的要求及地下水监测点布设原则,因附近相对较易污染的是浅层地下水, 以浅层水为主要监测对象,地下水监控井分布图见图 5.3-8。

监控井情况一览表 表 5.3-9

	- /	下水环境》(F	IJ 610-2016) 及《地	下水环境监测	技术规范》(HJ	* //	1
	-2020)的要求	及地下水监测	刘点布设原则 ,因附近	丘相对较易污染	杂的是浅层地下	水,	
	以浅层水为主要		地下水监控井分布图	图见图 5.3-8。		水,	
7/1/35	表 5.3-9	监控井情况	一览表	25	3/1/3	7/1/25	
	编号	方位	功能		位置		1
\\ ./h_	JK1 J	一区下游	污染跟踪监控井	- 1/1/A	区东南	.///	
	JK1				区东南		>>
						201	
A TOP THE STATE OF				S. Mer			7-7
				1	, 1> Y		1
			污染跟踪监控井		A The Parket		
X.				1	<i>Y</i>		1
			118				
				1	<u> </u>		1

图 5.3-8 地下水监控井分布图

②监测层位及频率

因为附近相对较易污染的是浅层地下水,以浅层地下水为主要监测对象,所 以监测井深定为 10m。

监测频率:每年丰水期、枯水期各监测一次。

监测项目为: pH、耗氧量、氨氮、溶解性总固体、硝酸盐氮、亚硝酸盐氮、

总磷、总大肠菌群、菌落总数。

③监测数据管理

上述监测结果应按项目有关规定及时建立档案,并抄送环境保护行政主管部门,对于常规检测数据应该进行公开,特别是对项目所在区域的居民公开,满足法律中关于知情权的要求。发现污染和水质恶化时,要及时进行处理,开展系统调查,并上报有关部门。

3) 地下水监测管理

为保证地下水监测有效、有序管理,须制定相关规定、明确职责,采取以下 管理措施和技术措施。

①管理措施

防止地下水污染管理的职责属于环境保护管理部门的职责之一。建设单位环境保护管理部门指派专人负责防治地下水污染管理工作。

建设单位环境保护管理部门应委托具有监测资质的单位负责地下水监测工作,按要求及时分析整理原始资料、监测报告的编写工作。

建立地下水监测数据信息管理系统,与厂环境管理系统相联系。

根据实际情况,按事故的性质、类型、影响范围、严重后果分等级地制订相应的预案。在制定预案时要根据本厂环境污染事故潜在威胁的情况,认真细致地 考虑各项影响因素,适当的时候组织有关部门、人员进行演练,不断补充完善。

②技术措施

按照《环境影响评价技术导则 地下水环境》(HJ 610-2016)要求,及时上报监测数据和有关表格。

在日常例行监测中,一旦发现地下水水质监测数据异常,应尽快核查数据,确保数据的正确性,并将核查过的监测数据通告厂安全环保部门,由专人负责对数据进行分析、核实,并密切关注生产设施的运行情况,为防止地下水污染采取措施提供正确的依据。应采取的措施如下:

了解厂区污水管道是否出现异常情况,出现异常情况的装置、原因。加大监测密度,如监测频率由每月(季)一次临时加密为每天一次或更多,连续多天,分析变化动向,周期性地编写地下水动态监测报告,定期对污染区的生产装置进行检查。

- (4) 应急响应
- ①应急程序

风险事故应急预案的目的是为了在发生风险事故时,能以最快的速度发挥最 大的效能,有序地实施救援,尽快控制事态的发展,降低事故对潜水含水层的污 染。针对应急工作需要,参照相关技术导则,结合地下水污染治理的技术特点, 制定地下水污染应急治理程序,见图 5.3-9。

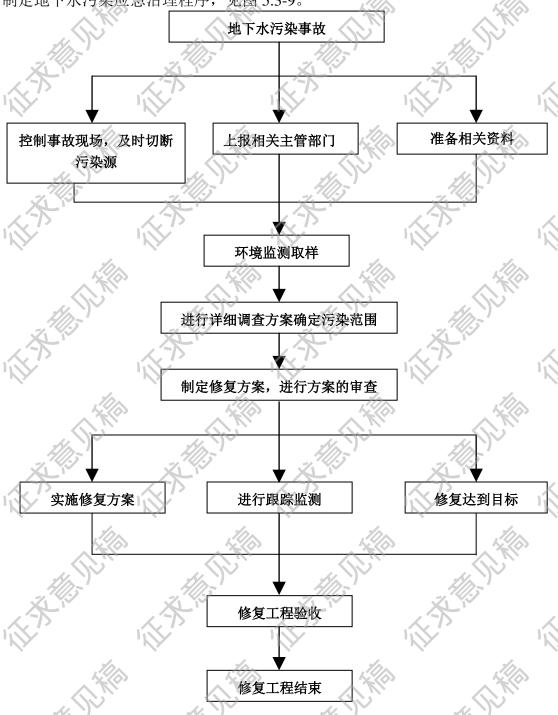


图 5.3-9 地下水污染应急治理程序框图

②应急措施

1) 一旦发生地下水污染事故,应立即启动应急预案。

- 2) 查明并切断污染源。
- 3)探明地下水污染深度、范围和污染程度。
- 4) 依据探明的地下水污染情况,合理布置截渗井,并进行试抽工作。
- 5) 依据抽水设计方案进行施工,抽取被污染的地下水体,并依据各井孔出水情况进行调整。
 - 6)将抽取的地下水进行集中收集处理,并送实验室进行化验分析。
- 7)当地下水中的特征污染物浓度满足地下水功能区划的标准后,逐步停止抽水,并进行土壤修复治理工作。

5.3.2.4 地下水环境影响评价结论

(1) 环境水文地质现状

本项目位于位于渭干河冲洪积细土平原上,按含水介质划分,调查区仅分布有第四系松散岩类孔隙潜水。潜水含水层的岩性主要为第四系全新统洪积的细砂,其次为中砂和粉砂。其中细砂层数较多,潜水位埋深约 1.77-4.73m,换算涌水量为 352.4-969.89m³/d, 水量中等; 渗透系数 1.016-2.877m/d。

从地下水监测与评价结果可以看出层地下水各监测点出现氯化物、硫酸盐、总硬度、溶解性固体、耗氧量超标现象。氯化物、硫酸盐、总硬度、溶解性固体超标这主要是因为浅层水为咸水,属于地质结构和水文地质结构等自然因素造成的。耗氧量超标主要原因为本区潜水埋深浅,与地表环境联系密切,导致其含量在部分点位偏高。

由地下水水化学类型判定结果可知,项目区浅层地下水水化学类型主要为CI-Na型水。

(2) 地下水环境影响

污染物发现泄漏后,沿着地下水主径流方向(西北向东南方向)向下游迁移, 且污染晕随着时间推移不断扩大,但超标污染晕均未运移出厂界,不会对下游敏感目标产生影响。

(3) 地下水环境污染防控措施

本项目地下水污染防治措施按照"源头控制、分区防治、污染监控、应急响应"相结合的原则,从污染物的产生、入渗、扩散、应急响应进行控制。

①源头控制

对产生的废水进行合理的治理和综合利用,以先进工艺、管道、设备、污废水储存,尽可能从源头上减少可能污染物产生;严格按照国家相关规范要求,对

污水储存及处理构筑物采取相应的措施,以防止和降低可能污染物的跑、冒、滴、漏,将废水泄漏的环境风险事故降低到最低程度;优化排水系统设计,管线铺设尽量采用"可视化"原则,以减少由于埋地管道泄漏而可能造成的地下水污染。

②分区防治

对厂区可能泄漏污染物的地面进行防渗处理,可有效防治污染物渗入地下,并及时地将泄漏、渗漏的污染物收集并进行集中处理。参照《环境影响评价技术导则 地下水环境》(HJ610-2016)中防渗技术要求,根据本项目可能产生污染的区域,进行了防渗分区划分。

③污染监控与应急响应

为了及时准确掌握场区及下游地下水环境质量状况和地下水体中污染物的动态变化,项目拟建立覆盖全区的地下水长期监控系统,依据地下水监测原则,参照《地下水环境监测技术规范(HJ164-2020)的要求,结合项目区水文地质条件,项目布设地下水监控并1眼。上述监测结果应按项目有关规定及时建立档案,并定期向场安全环保部门汇报,对于常规监测数据应该进行公开。如发现异常或发生事故,加密监测频次,并分析污染原因,确定泄漏污染源,及时采取应急措施。

(4) 地下水环境影响评价结论

本次地下水评价,在搜集大量当地的历史水文地质资料的基础上,开展了详细的水文地质勘查、现场试验和水文地质条件分析,通过建立模型,预测分析了非正常状况情景下污染物泄漏对场地及项目区附近区域地下水环境的影响,结果显示:非正常状况下,一旦发生泄漏,将会对厂区小范围地下水环境造成一定影响。针对可能出现的情景,厂区采取源头控制措施和分区防治措施,从源头上降低了污染物的泄漏风险,通过采取严格的防渗措施,切断了泄漏污染物垂向入渗进入地下水的途径,进而确保污染物不会对地下水水质产生污染影响。通过在厂区下游布设污染监控井,及时准确的掌握项目所在地周围地下水环境质量状况和地下水体中污染物的动态变化情况,防止或最大限度的减轻项目对地下水环境的污染。通过厂区制定应急响应方案,能够在发生污染物风险泄漏事故时,以最快的速度发挥最大的效能,有序地实施救援,尽快控制事态的发展,降低事故对潜水含水层的污染。综上分析,在相关保护措施实施后,该项目对水环境的影响是可以接受的,从环境保护角度讲,该项目选址合理,项目可行。

5.4 声环境影响预测与评价

5.4.1 噪声声源与源强

项目噪声污染源主要为电麻机、宰杀设备、分割设备、风机、各类泵机等, 声级值在 75dB(A)~100dB(A)。项目采取选用低噪声设备、基础减振、风机 加装隔声罩、厂房隔声等措施控制噪声、噪声污染源与防治措施见表 5.4-1。

表 5.4-1 工程主要车间噪声源强声级表

序号	生产车间	设备名称	治理前噪声 值 dB(A)	治理措施	治理后源强 dB(A)
1	待宰圈	泵类、羊叫声	75	基础减震、隔声罩	60
2	屠宰车间	电麻机、宰杀设备、分割 设备、制冷设备、风机	80~100	基础减震、风机消声、 厂房隔声	65
3	污水处理站	泵类、风机	75	基础减震、隔声罩	65

5.4.2 预测因子、方位

- (1) 预测因子: 等效连续 A 声级。
- (2) 预测方位: 厂界各监测点。

5.4.3 预测模式

扩建工程噪声源源强为以产噪车间(单元)治理后的源强,采用室外声源预测 模式进行预测。

(1)室外声源预测模式

室外声源衰减公式为:

 $L(r)=L(r_0)-20lg(r/r_0)$

式中: L(r)—距离噪声源 rm 处的声压级, dB(A);

r — 预测点距离噪声源的距离, m;

r。—参考位置距声源的距离, m

(2)噪声贡献与预测值计算

设第 i 个室外声源在预测点产生的 A 声级为 $L_{Ain,i}$,在 T 时间内该声源工作 时间为 $t_{in,i}$;第j个等效室外声源在预测点产生的A声级为 $L_{Aout,i}$,在T时间内该 声源工作时间为 tout.j,则预测点的总等效声级为:

$$L_{eqg} = 10 \lg \left(\frac{1}{T}\right) \left[\sum_{i=1}^{M} t_{in,i} 10^{0.1L_{A} \cdot v_{in,i}} + \sum_{j=1}^{M} t_{out,j} 10^{0.1L_{A} \cdot v_{out,j}}\right]$$
124

式中: T 为计算等效声级的时间, N 为室外声源个数, M 为等效室外声源个数。

预测点的预测等效声级(Leq)计算公式:

$$L_{\rm eq} = 101 \text{g} (10^{0.1 L_{\rm equil}} + 10^{0.1 L_{\rm equil}})$$

式中: Leag—建设项目声源在预测点的等效声级贡献值, dB(A);

L_{eqb}—预测点的背景值,dB(A)。

- (3)声环境影响预测步骤
- ①建立坐标系,以分别以项目养殖区、加工区中心点定位中心坐标,确定各 声源坐标和预测点坐标,并根据声源性质以及预测点与声源之间的距离等情况, 把声源简化成点声源。
- ②根据已获得的声源源强的数据和各声源到预测点的声波传播条件资料,计算出噪声从各声源传播到预测点的声衰减量,由此计算出各声源单独作用在预测点时产生的 A 声级(L_{Ai})或等效感觉噪声级(L_{EPN})。

5.4.4 预测结果

根据预测模式, 计算出厂界噪声预测结果见表 5.4-2 和图 5.4-1。

表 5.4-2 噪声预测结果

单位: dB(A)

75 Mil 1- 2- 7-		现状值	-X-+1-/-	预测值	标准值
了贝?	则点名称	昼间	贡献值	昼间	昼间
3/1/3	东厂界	53.7	48.8	53.9-	60
47 57	南厂界	47.8	41.1	48.1	60
场区	西厂界	49.2	49.2	52.2	60
	北厂界	50.1	50.2	53.1	60

项目只在昼间运行,由预测结果可知,项目厂界噪声贡献值在 41.1~50.2dB (A) 之间,昼间噪声预测值在 48.1~53.9dB (A) 之间,满足《工业企业厂界环境噪声排放标准》(GB12348-2008) 2 类标准,不会对周边声环境产生影响。

5.5 固废影响分析

根据工程分析,项目产生的固体废物主要为羊舍待宰区产生的羊粪、内脏处理过程中产生的肠胃容物(羊粪),羊屠宰过程中产生碎肉、碎骨,不合格羊及产品,污水处理站产生的污泥,以及废弃包装袋、废树脂、职工生活垃圾等。

(1) 一般固体废物

①羊粪

本项目羊粪主要产生于待宰区以及内脏处理过程中产生的胃肠容物,根据《畜禽养殖业污染治理工程技术规范》(HJ497-2009)附录 A 表 A.2 中数据可知,牛产粪量为 20kg/d 头,本项目羊待宰区临时饲养时长为 12-24h,本次评价按 24h 计,本项目日屠宰羊 1000 只(折算牛 67 头),本项目待宰区羊粪产生量为 402t/a。本项目在待宰区采取禁食饲养方法,因此屠宰时胃肠容物会减少,本次评价按粪便产生量的 50%计,则本项目屠宰内脏处理过程中产生的羊粪量为 201t/a。

本项目待宰区采取干清粪工艺,产生的羊粪为一般固体废物,集中收集后外售作肥料加工。

②碎肉、碎骨

本项目在屠宰过程中会产生一定量的碎肉、碎骨,根据物料平衡,本项目屠宰过程中碎肉、碎骨产生量约为 205t/a,属于一般固体废物,集中收集后定期外售作饲料加工。

③污泥

污泥中含有丰富的氮、磷、钾,是很好的肥料,土地施用是最经济合理的处置方式。根据《屠宰与肉类加工废水治理工程技术规范》(HJ2004-2010),污泥产生量一般可按 0.3~0.5kg/kg-BOD5 计算,污泥含水率为 99.3%~99.4%,污泥在厂区内应进行浓缩及脱水,项目设置重力式污泥浓缩池,污泥经重力浓缩后,由高压泵打入污泥脱水机,使污泥内的水挤压出,达到脱水的目的,脱水后污泥含水率小于 80%。本项目 BOD5 处理量为 68.7t/a,污泥含水率按 80%计,则项目污泥产生量为 171.8t。污泥经浓缩脱水后外售堆肥用作农肥。脱水污泥禁止露天堆放,并应及时外运。项目设置污泥暂存间,地面采取防腐防渗处理,脱水污泥采用密闭车辆运输,污泥脱水产生的清液、滤液和冲洗水等重新进入污水处理站进行处理。

4)废包装袋

本项目产品需包装后外售,在包装过程中会产生一定量的废弃包装袋、包装箱等,产生量约为 2t/a,集中收集后外售综合利用。

⑤废树脂

本项目软水制备采用离子交换树脂工艺,树脂每 5 年更换一次,产生量为 0.5t/次,交由环卫部门统一处理。

(2) 危险固体废物

本项目为羊屠宰建设项目,危险固体废物为不合格羊及产品,严格按照《牛 羊屠宰产品品质检验规程》(GB18393-2001)进行生产及产品检验检疫,不可以 避免会产生少量不合格品。不合格品主要包括不合格肉羊、不合格产品,由于本 项目在进场时已采取严格检验检疫流程,因此不合格产品产生量较少,本次评价 按合格品的 0.1% 计, 产生量约为 6t/a, 属于危险废物 (HW841-003-01), 送至高 温高压化制罐处理,在罐内经搅碎、水解、干燥后外售作肥料加工。

①无害化处置分析

本次环评根据《病死及病害动物无害化处理技术规范》(农医发(2017)25号: 2017 年 7 月 3 日),《畜禽病害肉尸及其产品无害化处理规程》(GB16548-1996) 及《病害动物和病害动物产品生物安全处理规程》(GB/16548-2006)对常用 4 种 无害化处置方法从环境保护角度进行了方案比选,处置方法比选见表 6.2-6。

表 6.2-6 病死体无害化处置方法比选

	1	表 6.2-6	病死体无害	事化处置方	法比选		1/2	X 1
46	处置	焚烧	3	(///	制法	推埋法	发酵法	120
	方式	直接焚烧	炭化焚烧	干化法	湿化法	N. Y.	发酵法是指	
7/1/25		X (1)5	X	Q5"	7/1/25	ŽĮ.	将动物尸体	X_105
							及相关动物	
, to s		,10		将动物尸体 及相关动物	≱ 动物 尸休 乃	 掩埋法是指按照相	产品与稻糠、木屑等辅料	100
THE .		将动物尸体及		产品或破碎	相关动物产品	Eli.	按要求摆放,	Web.
3/1/25		相关动物产品 或破碎产.物,		产物输送入	或破碎产物送	体及相关动物产品		3/1/25
**	. /	投至焚烧炉本		高温高压容	<i>X.P</i>	投入化尸窖或掩埋 坑中并覆盖、消毒,	体及相关动物产品产生	*
%		体燃烧室,经				以中开復 二、	的生物热或	/
		充分氧化、热 解	ト经充分热 解	蒸汽经废气	进行初次固液	体及相关动物产品	加入特定生	
4/05		40.5	3	处理系统后 排出	分离	的方法	物制剂,发酵或分解动物	7/17-5
4		**	1	14F iLi	1		以分解 初初 尸体及相关	**
	1						动物产品的	
					+ 按序		方法	
Alma V		Alm -	3		吉核病、禽霍乱、 囊病、羊痘、绵		因重大动物 疫病及人畜	Z/m=
A CONTRACTOR OF THE PARTY OF TH	适用 范围	X I	X	(/:/	「那病、弓形虫	适用于养殖类项目	共患病死亡	X N
X.	15/19					N.Y	的动物尸体	1
				自]尸和内脏	4/20	和相关动物	
			,		127	N. MA		
7/1/5		X 195	X	45	7/1/5			XLIST
				童的 佟	127		1	

/ 1/1
产品不得使
用此种方式
进行处理
1
420
i 9
無
要求场地平
登
1
亏染土壤、地
下水风险

本项目选择的干法化制法进行无害化处置,符合《病死及病害动物无害化处理技术规范》(农医发(2017)25号,2017年7月3日),《畜禽病害肉尸及其产品无害化处理规程》(GB16548-1996)及《病害动物和病害动物产品生物安全处理规程》(GB/16548-2006)的要求。

②危险废物管理

a.危险废物贮存场所(设施)污染防治措施

本项目在厂区内设置 1 座危险废物暂存间,危险废物的贮存应按照《危险废物贮存污染控制标准》(GB18597) 中标准执行,地面与裙脚要用坚固、防渗的材料建造,建筑材料必须与危险废物相容,用以存放装载液体、半固体危险废物容器的地方,必须有耐腐蚀的硬化地面,且表面无裂隙,同时应关注"四防",即防风、防雨、防晒、防渗漏,基础必须防渗,防渗层为至少 1 米厚粘土层(渗透系数≤10⁻⁷cm/s),或 2 毫米厚高密度聚乙烯,或至少 2 毫米厚的其它人工材料,渗透系数≤10⁻¹⁰cm/s。

危废暂存间建设时应采用混凝土、砖或经防腐处理的钢材等作为建材材料建成的相对封闭式场所,并设通风口;外部配套建设雨水导排系统,防止雨水进入为危废暂存库内;危废库地面、收集区内壁等采用坚固、防渗、防腐蚀且与危险

废物相容的材料建造,保证防渗的面层结构足以承受--般符合及移动容器时所产生的磨损,并确保废物不渗入地下;不同类别的危险废物应采用容器分区贮存,各贮存区内设置导排沟和渗滤液收集系统以预防事故性遗漏。危废库内部不同分区设置相应的危险废物警示标识,外部设置危险废物警示标识。

b.危险废物运输过程的污染防治措施

按照《危险废物收集贮存运输技术规范》(HJ2025-2012),危险废物的收集包括两个方面:是在危险一废物产生节点将危险废物集中到适当的包装容器中或运输车辆上的活动;二是将已包装或装到运输车辆上的危险废物集中到危险废物产生单位内部临时贮存设施的内部转运。根据本项目产生的不同形式的危险废物特征,采取不同的收集措施,其中危险废物收集于 200L 的塑料桶中,通过室内转运即可将该危险废物送到指定地点。危险废物收集和转运作业人员应根据工作需要配备个人防护装备,包括手套、防护镜、防护服和防护面具等。

- c.危险废物的收集应满足如下要求:.
- 1)应根据收集设备、转运车辆及现场人员等实际情况确定相应的作业区域,同时设置作业界限标志和警示牌。
- 2) 作业区域内应设置专门的危险废物专用收集通道和人员避险通道。
- 3) 危险废物收集应填写记录表,并存档妥善保存。
- 4) 收集结束后应清理和恢复收集作业区域,确保作业区域环境整洁安全。
- ④危险废物的内部转运应满足如下要求:
- 1) 危险废物的内部转运应综合考虑厂区的实际情况确定转运路线,尽量避开生活区和办公区。
- 2) 危险废物内部转运应采用专用的工具,危险废物内部转运应填写《危险废物厂内转运记录表》。
- 3) 危险废物内部转运结束后,应对转运路线进行检查和清理,确保无危险 废物遗失在转运路线上,并对转运工具进行清理。

(3) 生活垃圾

本项目职工 80 人,生活垃圾按 0.5kg/d •人,项目生活垃圾产生量共计 12t/a,由环卫部门统一处理。

序号	污染工序	污染物	产生量	处置措施	排放量
1	待宰圈、内脏处理	型 粪便 60g		外售作肥料加工	0
2	屠宰加工	碎骨、碎肉	206	外售作饲料加工	0
3	污水处理站	污水处理站 污泥		外售堆肥用作农肥	\Diamond 0
4	包装	包装 废包装袋		外售综合利用	0
5	软水制备	废树脂	0.5t/次	由环卫部门统一处理	0
6	生活垃圾	生活垃圾	12	环卫部门统一处理	0 /

表 5.5-2 危险废物产生量与处置措施

单位: t/a

序号	危险 废物 名称	危险废 物类别	危险废 物代码	产生量	产生工序及装置	形态	主要成分	有害 成分	产废周期	危险 特性	污染物防 治措施
1	不格 及 品	HW01 医疗废 物	HW841- 003-01	6	检疫过程	固体	病死 不合品	病死 羊、不合格产品	偶发	感染性	暂前 急病 间急病 间急病 的复数 明 多 不 多 不 多 不 多 不 多 不 多 不 多 的 多 不 多 的 多 的

5.6 生态环境影响分析

项目占地为工业用地,因此项目建设不会对生态环境产生明显影响。项目生态影响主要表现为占地,运行期间对周围环境的影响不大,对生态环境的影响是可以接受的。生态保护、恢复及补偿措施如下:

- (1) 强化生态环境保护意识。
- (2)对项目及周边区域进行绿化,既美化了环境,又减少了项目运行对周围生态环境的影响。

5.7 土壤环境影响预测与分析

项目属于污染影响型,根据《环境影响评价技术导则土壤环境(试行)》(HJ964-2018),建设项目土壤环境影响评价工作等级的划分应依据建设项目行业分类、污染影响型敏感程度、占地规模进行分级判定:

对照《环境影响评价技术导则土壤环境(试行)》(HJ964-2018) 附录 A 表 A.1,本项目属于IV类项目,无需进行土壤评价。

5.8 环境风险影响评价

根据原国家环保部《关于进一步加强环境影响评价管理防范环境风险的通知》(国家环保部环发[2012]77号)及生态环境部发布的《建设项目环境风险评价技术导则》(HJ 169-2018)要求,对于涉及有毒有害和易燃易爆物质的生产、使用、储存(包括使用管线输运)的建设项目进行风险评价。

本次环境风险评价的目的在于识别物料生产、贮存、转运过程中的风险因素 及可能诱发的环境问题,以突发性事故导致的危险物质环境急性损害防控为目 标,对建设项目的环境风险进行分析、预测和评估,提出环境风险预防、控制、 减缓措施,明确环境风险监控及应急建议要求,为建设项目环境风险防控提供科 学依据,力求将建设项目的环境风险降至可防控水平。

5.8.1 风险调查与识别

5.8.1.1 物质风险识别

(1) 项目涉及物质危险性识别和评价

根据《建设项目环境风险评价技术导则》(HJ169-2018),危险物质包括原辅材料、燃料、中间产品、副产品、最终产品、污染物、火灾和爆炸伴生/次生物等。项目涉及到的危险性物质主要为燃料:天然气,以及火灾和爆炸伴生/次生物质 CO。该物质在生产、贮存及利用过程中均存在一定危险有害性,其物化性质及毒性见表 5.8-1、表 5.8-2。

爆炸极 物质 熔点 沸点 闪点 危险 危险度 形态 名称 (°C) 特性 场所 分类 (°C) (°C) 限% Η 天然气 天然气 -160 燃料 气体 易燃、有毒 1.8 5~14 管线 事故发 气体 -199.1 -191.4 <-50 12.5-74.2 易燃、有毒 CO 生区

表 5.8-1 项目涉及主要物料理化特性一览表

燃烧爆炸危险度接以下公式计算: H=(R-L)/L

式中: H—危险度; R—燃烧(爆炸)上限; L—燃烧(爆炸)下限 危险度 H 值越大,表示其危险性越大。

(2) 本工程主要危险性物质分析

根据本工程中各危险性物质的使用量和各危险性物质理化性质及危害情况, 现将本工程中主要危险性物质的危害列举如下:

405	表 5.8-2	毒性物质主要允	色害及毒性分级	405	4/0.5
A. W	序号 化学名称	侵入途径	健康危害	为	性
X/,		急性中毒	时,可有头昏、头痛、呕吐、	、乏力甚至昏毒性终	点浓度
· /	1 天然气	迷。病	程中尚可出现精神症状,步声	态不稳,昏迷 -1:2600	00mg/m ³
4		过程久者	,醒后可有运动性失语及偏	瘫。长期接触 毒性终	点浓度
		7	天然气者,可出现神经衰弱结	宗合征 -2:1500	00mg/m^3
-1.7/15	1/1/25	一氧化矿	炭在血中与血红蛋白结合而	i造成组织缺	-1,4/15
	4	氧。急性	中毒: 轻度中毒者出现头	痛、头晕、 耳	
J.		鸣、心悸	、恶心、呕吐、无力,血液	母 工 穴	点浓度
.///			「高于 10%;中度中毒者除	-1:380	Omg/m ³
A KIDS	5 CO		活膜呈樱红色、脉快、烦躁 5.5.3%。 在流氓怎么你呢?		点浓度
	1/2	浅至中原			mg/m ³
7/1/25	7///5	-/. V.S/	度患者深度昏迷、瞳孔缩/ 插搐、大小便失禁、休克、	1.4 1010/1-1	27/3
(F)	1	重心肌扎		/ -/\	
	相相立在口		. 173	- Ky	三 中央
200	根据项目厂		·面布置功能区划,项目	厄阿里兀划分、里	.兀闪厄
	险物质最大存在 表 5.8-3	生量、潜在的风险 项目危险单元 划	ὰ源分析结果见下表。 ★		
7 1/25	-1 (1.7)	(险单元	名称	储存最大量((1)
		然气管道	天然气	0.2	
	70,	W (HVE	7×316 (0.2	
			132		

\		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(1 4)	20 1111			
Z Jan	根据项	目厂区生产装置及平	面布置功能区划,工	项目危险单元划分、	、单元内危		
	险物质最大	存在量、潜在的风险	源分析结果见下表				
4/17.5	表 5.8-3	项目危险单元均	分	4/1/25	储存最大量(t) 0.2		
A TO	序号	风险单元	名称	储存最大	量 (t) 2		
		天然气管道	天然气	0.2	2 1		
A Alisa Salah							
Y /n.	, //	- 10 M	'N	'N	10.		
		居厂区生产装置及平存在量、潜在的风险 项目危险单元支 风险单元 天然气管道					
A Alban Dalle		天然气管道					

项目危险单元

5.8.1.2 生产系统危险性识别

(1) 生产系统危险性识别范围

生产系统危险性识别,包括主要生产装置、储运设施、公用工程和辅助生产设施,以及环境保护设施等。

(2) 生产设施及生产过程主要危险部位分析

根据工艺流程和生产特点,项目生产设施及生产过程主要危险部位为综合罐 区、含氨废水罐区等。

生产过程中可能发生的潜在风险事故及其原因见表 5.8-4。

(3) 伴生、次生事故分析

工程应严格按照《工业企业总平面设计规范》(GB50187)、《建筑设计防火规范(2018 版修订)》(GB50016)进行总图布置和消防设计,易燃易爆及有毒有害物质贮存与装置区均满足安全距离要求,一旦某一危险源发生爆炸、火灾和泄漏,均能在本区域得到控制,避免发生事故连锁反应。

(4) 运输事故

本项目的危险物料在运输时,存在由于发生交通事故而引发的物料泄漏、发生火灾和爆炸等事故。本项目危险物料的运输全部委托有资质的单位运输。

在危险化学品运输过程中,可能引发危险化学品货物泄漏的原因有:车辆相撞、与固定物相撞、车辆急转弯、非事故引发的泄漏。可能引发运输车辆事故的一些原因,可大致分为以下几类:人员失误、车辆故障、管理失效、外部事件。

5.8.1.3 危险物质向环境转移的途径识别

本项目毒害物质扩散途径主要有如下几个方面:

大气扩散:有毒有害物质泄漏后直接进入大气环境或挥发进入大气环境,或者易燃易爆物质泄漏发生火灾爆炸事故时伴生污染物进行大气环境,通过大气扩散对项目周围环境造成危害。

水环境扩散: 拟建工程易燃易爆物质发生火灾事故时产生的消防废水或者泄漏的液态烃未能得到有效收集而进入清净下水系统或雨排系统, 通过排水系统排放入地表水体, 对地表水环境造成影响。

地下水环境扩散:本项目液态危险物质泄漏或事故废水,通过厂区地面下渗 至地下含水层并向下游运移,对下游地下水环境敏感目标造成风险事故。

危险物质向环境转移的途径识别见表 5.8-4、图 5.8-2。

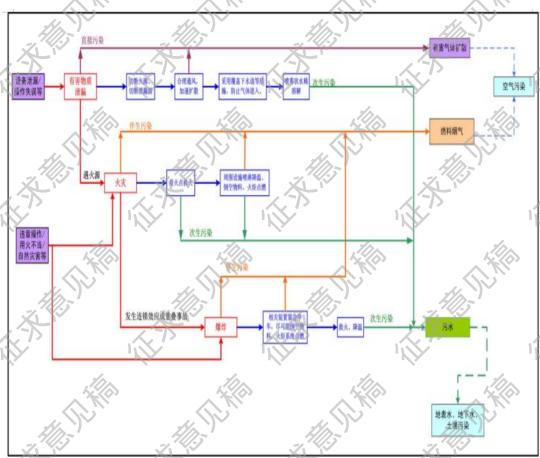


图 5.8-2 危险物质向环境转移的途径图

表 5.8-4 项目环境风险及环境影响途径识别表

序号	风险单元	回心酒	作业	主要危险	环境风险类型	环境影响	可能受影响的
万 与	八四年几	从小 型	特点	物质	小規八極天至	途径	环境敏感目标
	4/05		3	05	407.5	- 4//	居住区、医疗
天然气管 线	天然气	常温	天然气	天然气管道泄漏中毒	大气	卫生、文化教	
		常压	八派(人次,自戶便棚上母		育、科研、行	
		-/-			**		政办公
	污水热理		常温	4.0	洲是司伊 纳· 州	排放地表	地表水
2 污水处理	污水池	医水	废水	泄漏引发染物	水体	地农水	
	- 4/1/5	'	常压	05	排放	地面下渗	地下水

5.8.1.4 危险物质及工艺系统危险性(P)分级

项目危险物质数量与临界量比值(Q)计算结果,见表 5.8-5。

表 5.8-5 项目危险物质数量与临界量比值(Q)计算结果一览表

序号		危险物质名	危险物质名称		最大存在	临界量	1,	
卢 万	类别	名称	风险单元	CAS 号	总量 q _n /t	Q _n /t	q/Q 值	Q值
厂区	燃料	天然气	天然气管道	74-82-8	0.2	5	0.04	划分
			Q 值 Σ				0.24	1

根据上表可知,本项目Q值为Q<1。

根据《建设项目环境风险评价技术导则》(HJ 169-2018),风险潜势为为 I 对应环境风险评价等级为"简单分析"。

(2) 行业及生产工艺(M)

本项目厂区行业及生产工艺 M 值计算结果,见表 5.8-6。

表 5.8-6 项目行业及生产工艺 M 值计算结果表

序号 行业	工艺单元名称	生产工艺	数量/套	M 分值 M 值划分
1 其他 ^①	物料库	物料存储	1	5 M=5,为M4

①:石化、化工、医药、轻工、化纤、有色冶炼、管道、港口/码头、石油天然气等以外的行业。 根据上表可知,本项目 M 值 M=5,为 M4。

5.8.2.5 环境敏感目标调查

(1) 环境敏感特征

经调查,项目周边大气环境、地表水环境、地下水环境敏感特征情况, 5.8-7。

经调	查,项	目周边大气环境、地	表水环境、地	也下水环均	竟敏感特征情	况,见表	Y /		1
5.8-7。	5/1	in In		100		100	`	1/2	
表 5.	8-7	项目环境敏感特征表	Ê	1/2/02		1/22		Klas	
Ź		环境	竟敏感特征		2/10-		2/11-		
X	5)	XL Y	址周围 5km 范	范围内	XL, N		XL (S)		
	序号	敏感目标名称	相对方位	距离/m	属性	人口数	5/3		1
	1	排孜阿瓦提二村	Е	1178		120		10	
	2	排孜阿瓦提村	E	1543		30		4(0)	
1	3	排孜阿瓦提一村二小队	. E	2105		80			
7.14	4	排孜阿瓦提二村一小队	. NE	1374	7/1/25	260	7/1/35		
环境	5	排孜阿瓦提二村二小队	. NE	1425	居住区	180	75		
空气	6	排孜阿瓦提一村一小队	. NE	2710		30			
\	7,7	墩力买村	NW	3878		150		190	
	8	英也尔村团结村	NW	4367		220		Pull	
- 4	9	奥依玛特阔坦村	NW	3124	4/05	310	-1405		
	10	阿克勒克村一小队	SE_	4951	X	480	*		
		厂址周边 5001	m 范围内人口	数小计		<500			1
		厂址周边 5km	n范围内人口数	数小计		<10000		1/2	
	<u>AX</u>	大气环境	意敏感程度 E f			Ê3		4/00	
2			<u> </u>	1)0		<u> </u>	Z/m.		
XL	序号	受纳水体名称 排	水点水域环境	功能	24 小时内流经	A范围	XL		
地表水	1	7.72	47		<u> </u>				1
		本的排放点下游(顺水流	E向) 10 km 范	围内、近	岸海域一个潮昂	周期水质点			
	可能达到	到的最大水平距离的两倍	范围内敏感目	10 km 范围内、近岸海域一个潮周期水质,内敏感目标					
A.			136			7,,,		7,,,	
-,4/	25	-1/1/25		7	7,405		-14/15		
人个		人子	人子		15	_	不		
		到的最大水平距离的两倍				1/2	***************************************		1

							1	
Zin.	2	序号	敏感目标名	称 环境敏感特	f征 水质目	标 与排	放点距离/m	Zin V
XLIS	XL	1	XI-	Xi	<u></u>	ŽĮ.	<u></u>	XLIS
			地表	 麦水环境敏感程度	Е值		E3	
,				厂址周围 51	km 范围内	- KY		<i>Y</i>
		读 里	环境敏感	环境敏感特征	水质目标	包气带	与下游厂界	4/10
	地下水	12.2	区名称	小兒蚁恐竹仙	小灰白小	防污性能	距离/m	
7/1/35	-,40	25 1	, ⁴ (1)3	:	Z/():5	, ⁴ ():	5	7.405
	1		地下	水环境敏感程度	E 值	15	E3	*
	(2)	环境敏感	落程度(E)	分级			1	
400	按照	《建设项	目环境风险记	平价技术导则》	(HJ169-201	8), 项目环	境敏感程度	40

(2) 环境敏感程度(E) 分级

按照《建设项目环境风险评价技术导则》(HJ169-2018),项目环境敏感程度 (E) 分级包括大气环境、地表水环境、地下水环境,分别进行分级判定。

A大气环境

本项目大气环境敏感性分级判定见表 5.8-8。

表 5.8-8 大气环境敏感程度分级表

		/2/\
分级	大气环境敏感性判据	本项目判定
	周边 5km 范围内居住区、医疗卫生、文化教育、科研、行	项目周边 5km 范围内
3	政办公等机构人口总数大于5万人,或其他需要特殊保护区	居住区、医疗卫生、
E1 -	域;或周边 500m 范围内人口总数大于 1000 人;油气、化	文化教育、科研、行
1	学品输送管线管段周边 200m 范围内,每千米管段人口数大	政办公等机构人口总
	于 200 人	数总数小于 1 万人,
	周边 5 km 范围内居住区、医疗卫生、文化教育、科研、行	周边 500m 范围内人
	政办公等机构人口总数大于1万人,小于5万人;或周边500	口总数小于500人。
E2	m 范围内人口总数大于 500 人,小于 1000 人,油气、化学	7/15
	品输送管线管段周边 200m 范围内,每千米管段人口数大于	判定本项目大气环境
	100 人,小于 200 人	敏感分级为 E3 级。
	周边 5km 范围内居住区、医疗卫生、文化教育、科研、行政	
E3	办公等机构人口总数小于 1 万人;或周边 500m 范围内人口	
ES	总数小于 500 人;油气、化学品输送管线管段周边 200m 范	Am-
Ĭ,	围内,每千米管段人口数小于 100 人	Z

根据上表可知,本项目大气环境敏感分级为 E3 级。

B地表水环境

137 地表水功能敏感性分区见表 5.8-9, 环境敏感目标分级见表 5.8-10, 地表水 < 5.8 1111 / 11 意敏 环境敏感程度分级见表 5.8-11。

地表水功能敏感性分区表

					1/1	7
	表 5.	8-9 地表水功能敏感性	生分区表			źm:
XL	分级	地表水环境敏感	济特征判据	本项目	判定	XLIV
	敏感 F1	排放点进入地表水水域环境 或海水水质分类第一类;或 物质泄漏到水体的排放点算 流最大流速时,24 h 流经范	以发生事故时,危险 起,排放进入受纳河	项目事故情况 事故废水池, 污水站处理, 上述地表水体。	分批排至项目 不直接外排入	7 > /
	较敏感 F2	排放点进入地表水水域环境水质分类第二类;或以发生漏到水体的排放点算起,排流速时,24 h流经范围内涉	E事故时,危险物质泄 排放进入受纳河流最大	判定本项目地 性为 F3 级。	表水环境敏感	7/1/25
	低敏感F3	上述地区之外的其他地区			110	

根据上表可知,项目地表水环境敏感特征为低敏感 F3 级。

表 5.8-10 环境敏感目标分级表

г			
L	分级	环境敏感目标 本项目判定	1
	1///	发生事故时,危险物质泄漏到内陆水体的排放点下游(顺水流 项目事故废水经收	
>		向)10km 范围内、近岸海域一个潮周期水质点可能达到的最 集后排至项目污水)
		大水平距离的两倍范围内,有如下一类或多类环境风险受体: 站处理,不直接外	
		集中式地表水饮用水水源保护区(包括一级保护区、二级保护 排入地表水体。	
	X	区及准保护区);农村及分散式饮用水水源保护区;自然保护	
	S1	区; 重要湿地; 珍稀濒危野生动植物天然集中分布区; 重要水 判定本项目环境敏	1
		生生物的自然产卵场及索饵场、越冬场和洄游通道;世界文化 感目标敏感性为	
3		和自然遗产地;红树林、珊瑚礁等滨海湿地生态系统;珍稀、 S3 级。	1
		濒危海洋生物的天然集中分布区;海洋特别保护区;海上自然	
	X	保护区; 盐场保护区; 海水浴场; 海洋自然历史遗迹; 风景名	
L		胜区;或其他特殊重要保护区域	1
	. ///	发生事故时,危险物质泄漏到内陆水体的排放点下游(顺水流	ľ
>		向)10 km 范围内、近岸海域一个潮周期水质点可能达到的最)
	S2	大水平距离的两倍范围内,有如下一类或多类环境风险受体	
	-1.	的: 水产养殖区; 天然渔场; 森林公园; 地质公园; 海滨风景	
-	X	游览区;具有重要经济价值的海洋生物生存区域	
	1	排放点下游(顺水流向)10 km 范围、近岸海域一个潮周期水	1
	S3	质点可能达到的最大水平距离的两倍范围内无上述类型 1 和	
L		类型 2 包括的敏感保护目标	
	根	据上表可知,项目环境敏感目标分级为 S3 级。	
	X		
			1
>)
		138	
	Zi		
	T		1
	1///		1

根基 根据上表可知,项目环境敏感目标分级为 S3 级。

<u>表</u> 5.8-11 地表水环境敏感程度分级表

	表 5.8-11 地名	長水环境敏感程度 分	级表		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	环境敏感目标	F1	地表水功能敏感性 F2	F3	77/3
	S1 S2	E1	`E1	E2 E3	
	S3	El	E2	E3	

根据上表可知,本项目地表水环境敏感程度分级为 E3 级。

C地下水环境

项目地下水功能敏感性分区表 5.8-12, 包气带防污性能分级见表 5.8-13, 地 下水环境敏感程度分级见表 5.8-14。

地下水功能敏感性分区表 表 5.8-12

	衣 3.8-	12 地下小切能敬愿性分区农	7/45	-1 (/5)
	分级	地下水环境敏感特征	本项目判定	**
		集中式饮用水水源(包括已建成的在用、	项目调查评价范围不涉及集中式	1
	Ÿ	备用、应急水源,在建和规划的饮用水水	饮用水水源(包括已建成的在用、	JOA
>31	敏感 G1 <	源)准保护区;除集中式饮用水水源以外	备用、应急水源,在建和规划的饮	1/4/00
	数恋 GI	的国家或地方政府设定的与地下水环境	用水水源)准保护区及保护区以外	Zin-
	XL	相关的其他保护区,如热水、矿泉水、温	的补给径流区;不涉及除集中式饮	X_(3)
ļ	11	泉等特殊地下水资源保护区.	用水水源以外的国家或地方政府	//>
	N. S.	集中式饮用水水源(包括已建成的在用、	设定的与地下水环境相关的其他	/ 2
		备用、应急水源,在建和规划的饮用水水	保护区; 也不涉及未划定准保护区	4(0)
	1/2	源)准保护区以外的补给径流区;未划定	的集中式饮用水水源及其保护区	
	较敏感 G2	准保护区的集中式饮用水水源,其保护区	以外的补给径流区;未涉及分散式	7,405
	1	以外的补给径流区;分散式饮用水水源	饮用水水源地;也不涉及特殊地下	75
		地;特殊地下水资源(如热水、矿泉水、	水资源(如矿泉水、温泉等)保护	1
>		温泉等)保护区以外的分布区等其他未列	区以外的分布区等其他未列入上	410
ŀ		入上述敏感分级的环境敏感区 ^a	述敏感分级的环境敏感区,故判定 本项目地下水环境敏感特征为不	(I) All
	不敏感 G3	上述地区之外的其他地区	本项自地下水环境敏感特征为不 敏感 G3	-40-5
F	a "环培敏咸	区"是指《建设项目环境影响评价分类管理		X iv
	境敏感区	区 足指 《建议次百个·光彩·特许 所分关首注	石水》中加州是1119人地下水田外	1
>	根据上	表可知,项目地下水环境敏感特征为	不敏感 G3。	410
	-,403	- 405	7/1/25	-,405
	1	(本)		**
				1
		Jan Jan	don don	Jan.
,,	<		Tyle, Tyle,	W. Kley
	4/17:	139		2////
	X		A TOP OF THE PROPERTY OF THE P	X
		139		
	1/X	L'A.	L'A L'A	7

--为不敏 ·i上表 ·i上表 根据上表可知,项目地下水环境敏感特征为不敏感 G3。

表 5.8-13 包气带防污性能分级表

	7///2	9///2
分级	包气带岩土的渗透性能	本项目判定
153	Mb≥1.0m,K≤1.0×10 ⁻⁶ cm/s,且分布连续、	项目所在区域包气带岩性主要为第四系
D3*	稳定	全新统洪积的细砂,其次为中砂和粉砂。
	0.5m≤Mb<1.0m,K≤1.0×10 ⁻⁶ cm/s,且分布	岩(土)层单层厚度 Mb≥1.0m,渗透系
D2	连续、稳定;	数 K>1.0×10 ⁴ cm/s,且分布连续、稳定
D2	Mb $\ge 1.0 \text{m}$, $1.0 \times 10^{-6} \text{cm/s} \le \text{K} \le 1.0 \times 10^{-4} \text{cm/s}$,	, 405°
1	且分布连续、稳定	5 LF
D1	岩(土)层不满足上述"D2"和"D3"条件	
Mb:	岩土层单层厚度; K: 渗透系数	

根据上表可知,项目包气带防污性能分级为D1。

表 5.8-14 地下水环境敏感程度分级表

与与世际运体化	(F)	地下水功能敏感性	75
包气带防污性能	G1	G2	G3
D1	E1	E1	E2
D2	EI	E2	E3
//D3	E2	E3	E3

根据上表可知,本项目地下水环境敏感程度分级为 E2 级。

综上,本项目大气环境、地表水环境、地下水环境敏感程度分别为 E3、E3、 E2。

5.8.2.6 环境风险潜势划分

按照《建设项目环境风险评价技术导则》(HJ169-2018),建设项目环境风险潜势划分为 I、II、III、IV/IV+级。建设项目环境风险潜势划分依据,见表 5.8-15。

表 5.8-15 建设项目环境风险潜势划分表

7/2	7/7		7/>_	7/>_			
	危险物质和工艺系统的危险性(P)						
环境敏感程度(E)	极度危害 P1	高度危害 P2	中度危害 P3	轻度危害 P4			
环境高度敏感区(E1)	IV ⁺	IV	III	§ III			
环境中度敏感区(E2)	IV	III	Ш	II			
环境低度敏感区(E3)	III	III	II	I			
注: IV ⁺ 为极高环境风险。	4/6						

本项目危险物质和工艺系统的危险性(P)为 P4,大气环境、地表水环境、地下水环境敏感程度分别为 E3、E3、E2,根据上表可知,本项目大气环境、地表水环境、地下水环境风险潜势分别为 I、 I 、 I 。

5.8.3 评价等级

(1) 风险评价等级

根据《建设项目环境风险评价技术导则》(HJ169-2018),环境风险评价工作等级划分为一级、二级、三级。环境风险评价工作等级划分依据见表 5.8-16。

表 5.8-16 环境风险评价工作等级划分依据表

环境风险潜势	$IV_{\rightarrow}IV^{+}$	III - A	II	- 1 (25 I
评价工作等级	4.7		三	简单分析 a

[&]quot;是相对于详细评价工作内容而言,在描述危险物质、环境影响途径、环境危害后果、风险 防范措施等方面给出定性的说明。见导则附录 A。

本项目大气环境风险潜势为I,评价工作等级划分为简单分析; 地表水环境风险潜势为I,评价工作等级划分为简单分析; 地下水环境风险潜势为II,评价工作等级划分为三级。

(2) 风险评价范围

根据《建设项目环境风险评价技术导则》(HJ169-2018)评价等级确定评价范围,项目风险评价范围见表 5.8-17。

表 5.8-17 风险评价范围表

	, tantalion of		
环境要素	风险导则中—评价范围确定依据	1	本项目风险评价
20000000000000000000000000000000000000	// / / / / / / / / / / / / / / / / / /	等级	范围
	大气环境风险评价范围:一级、二级评价距建		
	设项目边界一般不低于 5km; 三级评价距建设		
7/1/35	项目边界一般不低于 3km。油气、化学品输送		7/1/35
大气环境	管线项目一级、二级评价距管道中心线两侧一	简单	厂区: 自项目边界外延
小小児	般均不低于 200 m; 三级评价距管道中心线两	分析	500m 的区域
	侧一般均不低于 100 m。当大气毒性终点浓度		190
	预测到达距离超出评价范围时,应根据预测到		
4/11-	达距离进一步调整评价范围		4/10=
地表水环境	地表水环境风险评价范围参照 HJ 2.3 确定	简单	事故废水不外排
地农小小児	起农小沙泉外应厅"月记围参照 HJ 2.5 佣庄	分析	事以 及小个介绍
地下水环境	地下水环境风险评价范围参照 HJ 610 确定	三级	同地下水评价范围
I	///>///	<u> </u>	

注:环境风险评价范围应根据环境敏感目标分布情况、事故后果预测可能对环境产生危害的范围等综合确定。项目周边所在区域,评价范围外存在需要特别关注的环境敏感目标,评价范围需延伸至所关心的目标

本项目大气环境风险评价范围为自项目边界外延 500m 的区域;项目工艺废水排至现有工程兰炭技改项目污水站处理,清净下水综合利用,生活污水洒水抑

尘,均不直接排入地表水体,事故废水不外排,地下水环境风险评价范围为同地 下水评价范围。

5.8.4 源项分析

生产中危险化学品一旦发生泄漏,将会导致一系列人身危害和财产损失事故 发生。如易燃气体、液体或固体泄漏遇到火源就会燃烧、爆炸;腐蚀性物料泄漏 喷溅到身体会造成化学灼伤;员工不慎将泄漏毒性物料摄入体内,将会导致急性 中毒或职业病。

国内外同类型的生产企业跑冒滴漏、火灾、爆炸事故时有发生,根据有关资料统计,事故大致分为四种类型,火灾、化学爆炸、中毒窒息和人身伤亡。前三类是生产因素造成的,第四类属坠落等机械伤害事故。前三类生产事故中,违章操作占29.6%,设备损坏、缺陷故障占14.9%。在生产事故中,有39.9%的事故发生在检修期间。因此,必须从生产和管理等方面采取综合措施预防事故的发生。

国内同类生产企业典型事故案例汇总见表 5.8-18。

表5.8-18 国内同类生产装置及运输过程典型事故案例

5.8.5 环境风险分析

5.8.5.1 大气环境风险分析

本项目大气环境风险潜势为 I 级,评价工作等级划分为简单分析,本次仅简单分析大气环境影响。

项目天然气管线泄露遇明火发生火灾爆炸事故、爆炸伴生/次生污染物排放会对大气环境造成影响,事故会造成局部大气污染,但具有发生机率小、持续时间短的特性。风险源位于该区块所处地势平坦,一次性事故形成的局部大气污染在一定的气象条件下会逐步自然净化,对周围大气环境的影响很小,不会对附近居住区居民产生明显影响。

一旦发生事故及时启动事故应急预案,控制事故发展态势,可将事故风险降 至最低限度。

5.8.5.2 地表水环境风险分析

项目工艺废水收集后排至厂区污水站处理不外排,已进行风险防控,不与地表水系发生直接联系,不会对地表水环境造成影响。

5.8.5.3 地下水环境风险分析

项目一旦发生天然气泄露或引发火灾产生的伴生/次生污染等,对厂区及周 边工作人员造成一定影响,所以发生事故后,应立即采取相应的应急预案,对周 围受影响的人员进行疏散,避免人员伤亡。此外,项目危废间、污水处理站等均 按照相关要求采取了防渗措施,可有效防止污染物下渗进入包气带。

5.8.6 事故应急防范措施

5.8.6.1 天然气事故应急措施

①急救措施

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给氧。如呼吸停止,立即进行人工呼吸。就医。

皮肤接触:如果发生冻伤:将患部浸泡于保持在38~42C的温水中复温。不要涂擦。不要使用热水或辐射热。使用清洁、干燥的敷料包扎。如有不适感,就医。

②灭火方法

切断气源。若不能切断气源,则不允许熄灭泄漏处的火焰。喷水冷却容器, 尽可能将容器从火场移至空旷处。

灭火剂:雾状水、泡沫、二氧化碳、干粉。

③泄漏应急处置

消除所有点火源。根据气体的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。应急处理人员戴正压自给式空气呼吸器,穿防静电服。作业时使用的所有设备应接地。禁止接触或跨越泄漏物。尽可能切断泄漏源。若可能翻转容器,使之逸出气体而非液体。喷雾状水抑制蒸气或改变蒸气云流向,避免水流接触泄漏物。禁止用水直接冲击泄漏物或泄漏源。防止气体通过下水道、通风系统和密闭性空间扩散。隔离泄漏区直至气体散尽。

5.8.6.2 废水泄露风险防范措施

为保证项目废水处理设施正常运行,保证处理水质达标排放,本环评要求企业应严格落实以下要求:

- (1)废水处理设施必须严格实行 24 小时值班制度,如发现人为原因不开启治理设施,贵任人应受行政和经济处罚,并承担事故排放责任。
- (2)污水处理站和化粪池工作人员必须严格执行企业制定的设备维修保养制度,制定设备维修保养计划,定员管理,设备出现故障及时抢修。
- (3)备齐设备的易损配件,废水处理设备零配件应专库、专人保管,不得挪 作他用。
- (4)实现配备的备用污水设备完好率必须达到 100%,在主设备发生故障时立即起用备用设备。
- (5)在备用设备均不能使用的情况下立即停止生产,并报告政府环保部门,待设备修复调试正常,报环保部门批准后方可恢复生产。
- (6)如遇停电造成污水处理站不能工作或废水不能达标排放,应将废水截留 在调节池内,并立即停止生产,待供电恢复污水处理站调试正常后方可恢复生产。
- (7)车间应制定严格的废水排放制度,确保清污分流,污污分流,残液禁止直排。
- (8)考虑到市电供应障碍或自然灾害条件下变压器受损等导致停电,会使污水处理站出现停运状况,可能发生事故性废水排放。本环评要求企业在厂区内建设事故池(设计单位设计由调节池兼做事故池),在污水处理站发生故障时用于截留事故状态下废水,再采取合理措施处理与处置。根据"工程分析",生产废水排放量为295.3m³/d。由于项目废水排放时间集中于生产期间,废水排放时间按8小时计,即36.9m³/h。项目若因污水处理系统故障,企业保证污水处理站故障的设计抢修耗时最长不超过1小时,因此,本环评要求事故池的容积至少可容纳1小时的废水排放量,约36.9m¹,因此事故池容积可满足供电故障状态下污水处理站的废水排放量。由于事故池主要用于污水处理站废水收集,因此,应设于临近污水处理站、并在低地势的位置。
- (9)建立事故排放事先申报制度,未经批准不得排放,便于相关部门应急防 范,防止出现超标排放。
- (10)加强人员培训与管理工作,强化安全意识,并设置专职环保机构与人员,加强污染治理设施的日常管理,避免出现风险事故,一旦出现风险事故时,及时采取有效措施,将事故影响降至最低。

5.8.6.3 污水处理站消毒剂泄露风险防范措施

为保证项目废水处理设施正常运行,保证处理水质达标排放,本环评要求企业应严格落实以下要求.

- (1)严格密封,操作中巡回检查,对已出现的泄漏,及时发现立即清除,暂时不能清除的要采取有效的应急措施,以免扩大和发生灾难性的事故。
- (2)化学危险品应有名称、浓度、级别标签,否则应经有关人员鉴定确认方可使用。
 - (3)使用危险品时,事先应知道其性质及防护办法。

5.8.6.4 疫情风险防范措施

- (1) 动物入场检疫
- ①动物在进入本项目厂区时,应持有有效的检疫合格证明并须经驻场(厂)检疫人员查证验物,证物相符的方准入场,同时做好记录。
- ②证物不符或无有效检疫合格证明的或未经检疫的动物,关入隔离观察圈,隔离观察 30 天后进行重新检疫,合格动物方可屠宰,不合格动物进行无害化处理。
- ③动物屠宰后经过检疫人员宰后检疫、合格动物产品经检疫人员出具检疫合格证明、加盖验讫印章后方可出厂,同时作好产品流向登记。不合格动物产品,依法进行相应的处理,其处理费用由畜(货)主承担。
 - (2) 动物检疫申报
 - ①屠宰动物前业主或货主应当向驻场(厂)检疫员提前申报检疫
- ②经检疫合格的动物方可屠宰,对伤残等须急宰的动物应经驻场(厂)检疫员检查同意后按有关规定进行处置。
- ③不得屠宰未经检疫或检疫不合格的动物,不得屠宰病死、毒死或死因不明的动物。
 - ④对屠宰动物按照相关的屠宰检疫规程进行检验,对检疫合格的动物产
 - 品,加盖验讫印章或后方可出厂,对屠宰后按国家相关规定实施宰后检疫。
 - ⑤未经宰后检疫或宰后检疫不合格的动物产品,不得出厂销售。
 - ⑥对经宰后检疫不合格的动物产品必須按国家有关规定处理。
 - (3) 动物疫情报告
- ①严格遵守《动物防疫法》、《重大动物疫情应急条例》、《动物疫情报告管理 办法》等法律法规,发现动物疫情,按规定、程序上报。

- ②动物屠宰加工场所从业人员发现动物疫情,立即向驻场动物检疫人员反映。
- ③驻场动物检疫人员发现动物疫情,驻场检疫班组负责人要及时向当地动物 卫生监督机构负责人进行汇报。
- ④发现疑似重大动物疫情,当地动物卫生监督机构要及时与动物疫病预防控制机构沟通,按规定、程序上报。
 - ⑤不得瞒报、谎报、迟报、漏报动物疫情,不得阻碍他人报告动物疫情,
 - (5) 疫情处理制度
 - ①发现疫情后,应迅速隔离病羊,及时进行无害化处理。
 - a.在收集时,应当使用专用容器或包装袋盛装死亡动物。专用容器、包装袋 应防渗漏、耐腐蚀。重复使用的专用容器应易于清洗消毒。
 - b.急宰间的死亡动物应及时转移到无害化车间进行处置,不宜长时间存留 应当有专人负责管理。
 - c.若屠宰场内发生大规模疫情,应在主管部门的统--安排下,利用就近工业锅炉或者专用焚烧设备集中焚烧处理。
- ②全面彻底消毒。对病羊所在的羊舍及活动过的羊舍、接触过的用具进行严格消毒,病羊污染的饲料要进行销毁,病羊排出的粪便应集中到指定地点堆积发酵和消毒。
- ③逐只临床检查。对病羊舍或同群的其它羊要逐只多次进行详细临床检查, 必要时进行血清学诊断,以便尽早发现病羊。
- ④酌情实行封锁。发生危害严重的传染病时,应报请政府有关部门;如划定 疫区、疫点,实行封锁。必要时,应配合相关部门对场内及周边疫区范围内生羊 进行扑杀。

5.8.8 事故应急预案

根据《建设项目环境风险评价技术导则》(HJ/T169-2018)及《国家突发环境事件应急预案》(国办函[2018]119号)要求,本项目须制定风险事故应急预案。风险事故应急预案的主要内容见表 5.8-19。

表 5.8-19 突发环境事故应急预案

		No.			1
>	3	表 5. 8-19 突发	环境事故应急预案		
Γ	序号	项目	内容及要求	2/1/25	
F	л [.] 5	应急计划区	生产区、污水处理站。	75	1
_	11/2/	应急组织机构、人	工厂:成立指挥部,负责现场全面指挥,建立专业救援队伍,负		
>	2	思思组织加纳、八	责事故控制、救援、善后处理。	190	
	3	应急状态分类及 应急响应程序	规定事故的级别及相应的应急分类响应程序。		
	1	5	生产装置: a 防火灾、爆炸事故应急措施、设备与材料,主要为	**	
		应急设施、设备与	消防器材 b 防有毒有害物质外溢、扩散,主要是水幕、喷淋设备		1
	4	器材	罐区: a 防火灾、爆炸事故应急措施、设备与材料,主要为消防	JO.	
2)(Wes.	器材b防有毒有害物质外溢、扩散,主要是水幕、喷淋设备。	W. Kley	
	5	应急通讯、通知和 交通	规定应急状态下的通讯方式、通知方式和交通保障、管制。	ZLIJ.	
	111	应急环境监测及	由专业队伍负责对事故现场进行侦察监测、对事故性质、参数与		1
	6	事故后评估	后果进行评估,为指挥部门提供决策依据。	,	
		应急防护措施、清	事故现场:控制事故、防止扩大、蔓延及连锁反应。清除现场泄	4/0	
	7	除泄漏措施方法	漏物,降低危害,相应的设施器材配备。		
	.7	和器材	邻近区域:控制防火区域,控制和清除污染措施及相应设备。	-/4/5	
	15	<u> </u>	事故现场:事故处理人员对毒物的应急计量控制规定,现场及邻	75	
		应急剂量控制、撤	近装置人员撤离组织计划及救护。给出人员应急疏散线路图。		
	8	离组织计划、医疗	工厂邻近区:受事故影响的邻近区域人员及公众对毒物应急剂量	JA.	
		救护和公众健康	控制规定、撤离组织计划及救护。给出人员应急疏散线路图。	(1) Kley	
	0	应急状态终止与	规定应急状态终止程序,事故现场善后处理,恢复措施。	4/11=	
	9	恢复措施	邻近区域解除事故警戒及善后恢复措施。	XL,	
	10	人员培训及演练	应急计划制定后,平时安排人员培训及演练。	17	1
		八人纳安毕自47	对工厂邻近地区开展公众教育、培训和发布有关信息;	d _a	
>	11	公众教育信息纪	设置应急事故专门纪录,建立档案和专门报告制度,设专门部门		
		录和报告	负责管理。		
		4//>- "	\(\lambda_{-}'\) \(\lambda_{-}'\) \(\lambda_{-}'\)	4//>- "	

本项目从环境风险预防的角度,做好设备维护和保养工作能大大减少事故发 生的概率;从环境风险应急处理的角度,应建立事故应急处置和监测方案,形成 全厂环境风险安全系统,使得一旦发生事故,能迅速采取有力措施,减少对环境 造成污染。

建设单位应予以高度重视, 采 综上所述,项目环境风险水平是可以接受的。 取有效的防范和减缓措施,强化安全管理,避免事故的发生。

5.8.9 风险评价结论

(1) 项目涉及危险物质主要为天然气,主要分布在锅炉房等危险单元中,存在

危险因素主要为设备及管道设计、制造、安装缺陷、腐蚀、材料老化、违章操作, 引起危险物质事故泄漏,遇明火引发火灾、爆炸伴生/次生污染物排放及中毒。

项目大气环境、地表水环境、地下水环境风险潜势分别为 I、 I、 II,大气环境、地表水环境、地下水环境风险评价工作等级分别划分为简单分析、简单分析、三级,大气环境风险评价范围为自项目边界外延 500m 的区域,地表水环境风险评价范围为厂区废水、雨水总排口,地下水环境风险评价范围同地下水评价范围。

- (2)项目天然气管线泄露遇明火发生火灾爆炸事故、爆炸伴生/次生污染物排放会对大气环境造成影响,事故会造成局部大气污染,但具有发生机率小、持续时间短的特性。风险源位于该区块所处地势平坦,一次性事故形成的局部大气污染在一定的气象条件下会逐步自然净化,对周围大气环境的影响很小,不会对附近居住区居民产生明显影响。
- (3)项目工艺废水收集后排至厂区污水站处理不外排,已进行风险防控, 不与地表水系发生直接联系,不会对地表水环境造成影响。
- (4)项目已在厂区采取分区防渗措施、设置监控井,并提出了相应的污染 防治措施,地下水不利影响在可接受水平。
- (5)在落实有效的环境风险措施后,从风险预测结果来看,项目环境风险可降至可防控水平。
- (6)建议。项目具有潜在的事故风险,要切实从建设、生产、贮存等各方面积极采取防护措施,企业应制定并及时修订突发环境事件应急预案,做好与园区环境风险防控体系的衔接与分级影响措施。应根据国家环保管理要求,在项目运营一段时期后定期开展项目的环境影响后评价。

5.8.9 风险防范设施验收一览表

项目风险防范设施"三同时"验收一览表见表 5.8-20。

表 5.8-20 风险防范设施"三同时"验收一览表

项目	风险防范措施内容	投资(万	元)
应急预案	编制应急预案	1.5	10
4 7 7 7	可燃气体报警器、有毒气体报警器若干	/n.	
生产区	防火、防爆、防静电安全装置	14/00	
-	防护服、防毒面具、自给式空气呼吸器、检测及堵漏器材	20	
其它	泡沫消防系统、移动式消防灭火器材		
17	119 火警电话、120 急救电话及及应急通讯装置		
安全标示	厂区危险物质存放区、生产车间等重要防范部位都要设置安全标示	0.5	1
	企	/22	

表 5.8-21

		10					1		1	THE STATE OF THE S	
	木工	页目环境区	除评价	白杏耒』	司表 5 8- /	21 1		`			
7/1/35	-1	5.8-21	环境风险	((/-)		ZI o		ŽL.	(35)	XL	45
		作内容	1 30/24/2		A E A	完成情况	兄 1				
		A 11 11 15	名称		天然气						
		危险物质	存在总量/t		0.2	A	1/200		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\)	
				500m 范围	内人口数_	<500 人		围内人口	数_<1万	人	
7.405	风险调查	(25	-1	母公 与 地表水功	担管段局辺 」能敏感性	200m 范围内 F1□		最大) F2□	F3☑	<u> </u>	(1)5
	45	环境敏感性	地表水	环境敏感	目标分级	S1□		S2□-	S3☑	一个	-1
			地下水		能敏感性 防污性能	G1□ D1☑		G2□ D2□	G3☑ D3□		
JA.	*	.///	Q 值	Q<	<1☑	1≤Q<10□		Q<100□	Q>100[.1/12
4/0	物质及工さ	艺系统危险性	M 值	М	10	M2□		M3□	M4☑ P4☑		
Zin V	7	//n-\\\	P 值 大/		10 E10	P2□	E2□	P3□	P4☑ E3☑		
7/1/5	环境每	放感程度	地表	水シ	E1□	3,7/3	E2□	Z 70	E3☑		(1.5)
(-1)		风险潜势	地下 IV ⁺ ロ	水	E1□ IV□	III□	E2☑	II 🗹	E3□ I☑	7	
		介等级			二级口		三级 🗹		简单分析 ☑	1	
190		物质危险性)	有毒有智		جار ا	IE AV. DI	易燃易爆) F	100
	别	下境风险类型 影响途径	<u> </u>	泄漏 ! :气 ☑	M			及伴生/伙	生污染物排放 地下水 ☑		
4/11=	事故情	青形分析	源强设定	定方法	计算法	☑ 经验	估算法☑		其他估算法□		
XL	X	大气	预测	1	SLAB	□ A 大气毒性终点	FTOX□ 浓度-1	最大影响剂	其他□ 5围 / m	- X	
	风险预测		预测组	告果 -		大气毒性终点		最大影响和			
Y	与评价	地表水	X	最	近环境敏星	<u> </u>	到达时间				
1/20		地下水		最	近环境敏愿		<u>到达时间</u> 到达时间	d /d	1/20)	
	重点风险 防范措施				11/	竟风险防范验	11/1				
	的 4日1日 加		Zi	405		7/1/2		Z1	(5) '	Z1	
(F)	评价结论 与建议		有效的环境	6风险措施 1世 2 99	后,从风险 西切家173	预测结果来 ₩ # # # #	看,项目5	不境风险可	下降至可防控力 取库拉世族	水平。	
	与建议	建议:项目具 应及时修订突	有简任的事 发环境事件			【设、生产、则 【区环境风险】			/27 E/ m5 +# +/c	企业	
2/2	N	1/12			100		100		1400		Z/A
	注:"□"为	勾选项;"	"为填写:	<u> </u>	Kly.		ZIV.				
4/125	3	(///5-)		4/125	7	4/11=	~	4		Á	1/05
X	X	, Y	X.	_Y	Δ.	X		X		X	Y
	N. A.				11		1				
	1/3				*		/ A			1/2	4
		4		, 5					1/20		
4 10				4		2	5.				
3/4/3	7.	(25)	.7.	4//5		-1.405		.7.4	(25 °	7.	
不	人分	s.*	4.5	_ '		'木'		人分	. "	人分	-1
					1		1				
	*		*	\$ 100 m	100	49	JON	Ť		₩	,///>
A Klas					Klas		Kla,		V XXV		V Klas
Zin-	2	(////		2/2	1	49		Z			1/2
X_1/5	XI.	45	íX	14/5		XL, S		XI.	(5)	zi ²	
	1	-)	1	75		17		1	
1	1//		1///		11	Y		K)		1/1/	

6环境保护措施及其可行性论证

6.1 废气污染防治措施可行性分析

6.1.1 有组织废气防治措施

项目有组织废气主要为污水处理站恶臭、锅炉废气及化制废气。

污水处理站对缺氧池和污泥浓缩池加盖密闭,采用负压风机对其产生的臭气进行收集后送生物滤池系统吸收处理,净化后废气由 15m 排气筒排放;锅炉采用燃清洁能源(天然气)+低氮燃烧器+15m 排气筒排放;化制废气采用密闭收集+生物滤池系统+15m 排气筒排放。

①生物滤池

项目污水处理站废气采用生物滤池系统进行除臭,该设备主要处理工艺流程如图 7.1-1 所示。

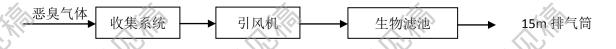


图 6.1-1 生物滤池系统工艺流程图

生物滤池系统属于生物除臭装置,是利用微生物细胞对恶臭物质的吸附、吸收和降解功能,对臭气进行处理的一种工艺,是《排污许可证申请与核发技术规范 农副食品加工工业—屠宰及肉类加工工业》(HJ 860.3—2018)有组织废气控制的可行技术。生物滤池系统除臭原理是将气体使聚在一起并加湿后经过管道输入生物滤池系统底部并使其扩张于生土内,臭气中多种污染成分溶于水后吸附于生土颗粒外表。通过时期在生土颗粒外表可渐渐培育出针对致臭事物的微生物,并可不断将致臭事物分解,完成脱臭。滤床填料可采用海绵、干树皮、晾干的草、木渣、贝壳、果壳及其混合物等。生物填料本身具备耐酸碱和调节酸碱的功能,且具有较大的空隙率和较强的吸附能力,防止填料酸化。生物滤池能有效储存所有微生物生长所需的营养,故可保证长期运行的条件下生物滤池的压损维持稳定。广州猎德污水处理厂采用洗涤-生物滤池系统联合除臭工艺对污泥浓缩池、脱水间臭气进行处理,NH3去除率大于90%,H2S去除率大于99%。

本项目项目恶臭气体中主要物质为氨和硫化氢,生物滤池系统对其净化效率取 90%,污水处理站 NH_3 排放量和排放浓度分别为 0.008kg/h 和 $1.6mg/m^3$, H_2 S 排放量和排放浓度分别为 0.0003kg/h 和 $0.1mg/m^3$,臭气浓度<2000(无量纲),

均满足《恶臭污染物排放标准》GB14554-93 中的二级新建标准要求,项目污水处理站废气采用生物滤池系统对恶臭气体进行净化是可行的。

本项目化制废气主要污染物为 H₂S、NH₃、臭气浓度、非甲烷总烃,废气经收集后引至生物滤池系统处理,满足《排污许可证申请与核发技术规范 农副食品加工一屠宰及肉类加工工业》(HJ860.3-2018)化制设备或车间废气可行技术要求,处理后废气 H₂S 排放速率为 0.0005kg/h,NH₃ 排放速率为 0.0012kg/h,臭气浓度<2000(无量纲),满足《恶臭污染物排放标准》(GB14554-93)中的二级新建标准要求,非甲烷总烃排放量和排放浓度为 0.003kg/h 和 1mg/m³,满足《大气污染物综合排放标准》(GB 16297-1996)表 2 标准限值要求。

②低氮燃烧器

低氮燃烧技术包括低氮燃烧器、空气分级燃烧、燃料分级燃烧等。

低氮燃烧器技术是通过特殊设计的燃烧器结构,控制燃烧器喉部燃料和空气的动量及流动方向,使燃烧器出口实现分级送风并于燃料合理配比,减少 NO_x 生成的技术。

空气分级燃烧技术是通过控制空气与煤粉的混合过程,将燃烧所需空气逐级送入燃烧火焰中,使燃料在炉内分级分段燃烧,减少 NO_x 生成的技术。

燃料分级燃烧技术是在主燃烧器形成初始燃烧区的上方喷入二次燃料,从而形成富燃料燃烧的再燃区,当 NO_x 进入该区域时与还原性组分反应生成 N_2 ,减少NOx生成的技术。

采取以上措施后外排锅炉烟气中颗粒物浓度 10mg/m^3 , SO_2 浓度 37.1mg/m^3 , NO_X 浓度 37.1mg/m^3 ,满足《锅炉大气污染物排放标准》(GB13271-2014)表 3中燃气锅炉排放限值要求。

6.1.2 无组织恶臭污染物防治措施

项目无组织排放的恶臭气体包括生产区无组织废气及污水处理站无组织废气。

①生产区无组织废气

项目生产区恶臭主要包括待宰圈产生的恶臭及屠宰车间产生的恶臭,根据建设单位提供资料,项目屠宰采用自动化生产线,人工参与量较传统屠宰工艺少,主要的恶臭产生源为待宰间羊的粪尿发酵、含硫蛋白分解产生的恶臭以及屠宰车间中羊的湿皮、血、肠胃容物和粪尿等臭气混杂在一起产生的刺鼻腥臭味,以及燎毛处理是产生的少量无组织废气,因此生产区无组织废气污染物主要为 H₂S、

NH3、臭气浓度、TSP、SO2、NOX。

为减少恶臭对周围环境的影响,结合《排污许可证申请与核发技术规范 农副食品加工工业—屠宰及肉类加工工业》(HJ860.3-2018)中相关要求,要求建设单位增加对待宰圈清洗次数,增加羊粪等废弃物的清理频次,保证待宰圈通风,同时增加屠宰车间的通风次数,及时清理屠宰车间内胃肠容物等废弃物,最大限度减少本项目生产区恶臭排放,采取以上措施后,屠宰车间 NH₃ 排放速率为0.015kg/h,H₂S 排放速率为0.006kg/h,臭气浓度<20(无量纲),待宰圈 NH₃排放速率为0.005kg/h,H₂S 排放速率为0.002kg/h,臭气浓度<20(无量纲),满足《恶臭污染物排放标准》(GB14551-93)表1中标准要求。

燎毛处理工序会产生少量燃烧废气,通过采取燎毛后增加清洗处理,增加通风次数等措施后,可有效减少污染物产生量,类比同类型项目,燎毛后产生的SO2排放速率为0.01kg/h,NOX排放速率为0.006kg/h,TSP排放速率为0.01kg/h,满足《大气污染物综合排放标准》(GB 16297-1996)表2无组织排放限值限值要求。

②污水处理站无组织废

本项目污水处理站污水处理过程中会产生恶臭,经有组织收集后还有少量恶臭以无组织逸散的方式排放,本项目采取对水处理池体、污泥浓缩池等加盖密闭的措施,加强有组织收集,污泥及时清运出厂,并在污水处理站周围加强绿化,减轻污水处理站无组织排放对周围环境的影响,采取以上措施后 NH3 排放速率为 0.009kg/h, H2S 排放速率为 0.0003kg/h, 臭气浓度<20(无量纲),满足《恶臭污染物排放标准》(GB14551-93)表1中标准要求。

综上所述,项目采取的无组织恶臭污染防治措施可行。

6.2 废水污染防治措施可行性分析

6.2.1 项目废水水质

项目废水包括屠宰废水、车辆清洗废水、检疫检验废水、锅炉系统排水、循环水系统排水及生活污水,其中锅炉系统排水与循环水系统排水用于厂区抑尘,生活污水经化粪池处理后与屠宰废水、车辆清洗废水、检疫检验废水排至厂区污水处理站,最终排至沙雅县污水处理厂处理。

项目进入污水处理站的水量为 294.2m³/d,混合废水水质指标见表 6.2-1。

表 6.2-1 项目混合废水水质情况

mg/L (pH、大肠菌群除外)

污染物	COD	BOD ₅	SS	NH ₃ -N	总氮	总磷	动植物油	总大肠菌群数	pН
浓度	1956.6	978.0	978.5	146.7	159.5	5.0	194.8	39万	6~8

6.2.2 污水处理站工艺选择

(1) 工艺选择的原则

- ①工艺选择应以连续稳定达标排放为前提,选择成熟、可靠的废水处理工艺。
- ②应根据废水的水量、水质特征、排放标准、地域特点及管理水平等因素确 定工艺流程及处理目标。
- ③在达标排放的前提下,优先选择低运行成本、技术先进的处理工艺。处理 工艺过程应尽可能做到自动控制。
- ④屠宰与肉类加工废水处理应采用生化处理为主、物化处理为辅的组合处理 工艺,并按照国家相关政策要求,因地制宜考虑废水深度处理及再用。

(2) 典型处理工艺

根据《屠宰与肉类加工废水治理工程技术规范》(HJ2004-2010),推荐的典型处理工艺见图 6.2-2。

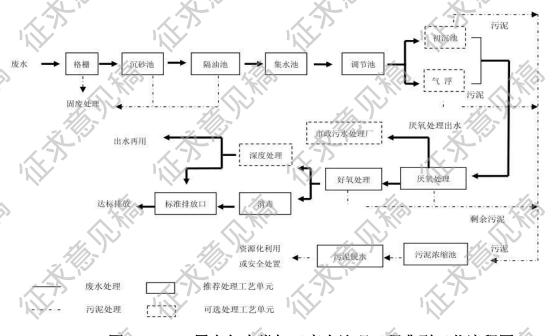
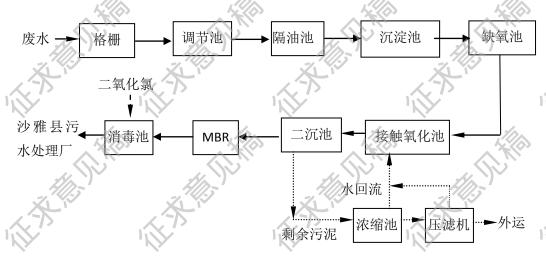


图 6.2-2 屠宰与肉类加工废水治理工程典型工艺流程图

(3) 本项目工艺流程


根据屠宰废水属于中等浓度(COD1000-2000mg/L)易生化(BOD₅: COD = 0.4~0.6)有机废水这一水质特征,在处理工艺选择上应以生物法为主,而以物理法和化学法作预处理,以减轻生物处理的负荷,提高废水处理后的出水水质,

李 《

HA THE NEW YORK TO SEE THE PARTY OF THE PART 传染· GB1 □一級国内外多年实践所证实。
 项目废水处理后应满足《肉类加工工业水污染物排放标准》(GB13457-92)
 表3 三级标准、《屠宰及肉类加工工业水污染物排放标准》(二次征求意见稿)表
 3 特别排放限值间接排放限值要求,最终排入沙雅县污水处理厂进行深度が平综合分析,推荐采用"预处理+缺氧+好氧+MBR+消毒"が A STATE OF THE PARTY OF THE PAR

6.2.2.3 工艺流程设计及可行性论证

本项目采用"预处理+缺氧池+好氧池+MBR+消毒"处理工艺处理规模为1000m³/d,污水处理站工艺流程见图 6.2-3。

工艺说明:

(1)格栅

格栅用来去除废水中的碎肉、骨屑、内脏、毛发等杂物,防止设备管道堵塞、降低负荷。

(2)调节池

调节池用于调节水质、水量,使后续设备和构筑物正常工作,不受废水高峰流量或浓度变化的影响。

(3)隔油池

隔油池用于去除废水中可自然上浮的浮油。

(4)沉淀池

沉淀池用来去除废水中的粪便、砂子和食物残渣等。

(5)缺氧池

有水解反应,在脱氮工艺中,其 pH 值升高。在脱氮工艺中,主要起反硝化去除硝态氮的作用,同时去除部分 BOD,以提高污水的可生化性。

(6)接触氧化池

在曝气池中设置填料,将其作为生物膜的载体。待处理的废水经充氧后以一定流速流经填料,与生物膜接触,生物膜与悬浮的活性污泥共同作用,达到净化废水的作用。

(7)二沉池

泥水分离使经过生物处理的混合液澄清,同时对混合液中的污泥进行浓缩。 二沉池是污水生物处理的最后一个环节,起着保证出水水质悬浮物含量合格的决 定性作用

(8)MBR

MBR 是一种将高效膜分离技术与传统活性污泥法相结合的新型高效污水处理工艺,它用具有独特结构的 MBR 平片膜组件置于曝气池中,经过好氧曝气和生物处理后的水,由泵通过滤膜过滤后抽出。它与传统污水处理方法具有很大区别,取代了传统生化工艺中二沉池和三级处理工艺,将生物体截流在生物反应器中,通过保持高的生物体浓度和截流高分子量的溶质,促使进水有机物的矿化,而无需进行后续处理。

(9)消毒池

消毒是利用二氧化氯与污水混合进行消毒,杀死污水中病原体微生物。

(10)在线监测

水质在线监测系统(WQMS)是一套以在线自动分析仪器为核心,运用现代传感技术、自动测量技术、自动控制技术、计算机应用技术以及相关的专用分析软件和通信网络组成的一个综合性的在线自动监测体系,可尽早发现水质的异常变化,为防止水质污染迅速做出预警预报,从而为管理决策服务。按照《排污许可证申请与核发技术规范 农副食品加工工业—屠宰及肉类加工工业》(HJ860.3—2018),项目属于重点管理排污单位,废水总排放口应安装自动监测装置。

项目选用的污水处理工艺符合项目特点,与屠宰与肉类加工废水治理工程典型工艺流程相符,同时根据项目实际情况进行了适当的调整,符合《屠宰与肉类加工废水治理工程技术规范》(HJ2004-2010)相关要求,同时为《排污许可证申请与核发技术规范 农副食品加工工业—屠宰及肉类加工工业》(HJ860.3—2018)污染防治可行技术。具体对比见下表:

项目污水处理工艺对比可行性一览表

-			· · · · · · · · · · · · · · · · · · ·	
	X	《屠宰与肉类加工废水	《排污许可证申请与核发技术规	X
	项自	治理工程技术规范》	范 农副食品加工工业—屠宰及	本项目污水处理工艺
	坝日	(HJ2004-2010)	肉类加工工业》(HJ860.3—2018)	一个项目仍外处理工乙
		典型工艺	可行技术	4/0
	排放去	排入市政污水处理厂	间接排放	排入沙雅县污水处理
	向/方式	部八川政行小处理/	申 按採成	7/05
			1)预处理:粗(细)格栅(禽类屠宰需设置专用的细格栅、水力筛或筛	(1) 75 kl 700 kg km
>		格栅+沉砂池+隔油池+	网); 平流或旋流式沉砂、竖流或 辐流式沉淀、混凝沉淀; 斜板或	(1) 预处理:格栅+隔油沉砂池+调节池
	工艺	集水池+调节池+初沉池/气浮池+厌氧处理+好	平流式隔油池; 气浮。	(2) 生化处理: 缺氧池+生物接触氧化
	X	不得他+庆氧处理+好 氧处理	2)生化法处理: 升流式厌氧污泥床	一
		半 (又)生	(UASB); IC 反应器或水解酸化	(3) 消毒
		'	技术;活性污泥法;氧化沟及其	(3) 10.74
>		4.6	各类改型工艺。	4.

6.2.2.4 废水达标可行性论证

项目污水处理站各处理单元可达到的净化效果见表 7.2-6。

处理效果 COD83.2%、BOD₅79.6%、SS88.0%、氨氮 85.8%、总氮 81.0%、 总磷 81.0%、动植物油 80.4%、大肠菌群数 99%, 出水水质 COD328.7mg/L、 $BOD_5199.5$ mg/L、SS117.4mg/L、氨氮 20.9mg/L、总氮 30.3mg/L、总磷 0.9mg/L、 动植物油 38.2mg/L、大肠菌群 3897 个/L、pH6~8,满足《肉类加工工业水污染 物排放标准》(GB13457-92)表 3 三级标准、《屠宰及肉类加工工业水污染物排 放标准》(二次征求意见稿)表3间接排放限值要求。

表 6.2-3 废水处理效果一览表

项目		COD	BOD ₅	SS	NH ₃ -N		总磷	动植物油	大肠菌群数
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	总氮		(mg/L)	(个/L)
7	进水	1956.6	978.0	978.5	146.7	159.5	5.0	194.8	389677
预处理 单元	出水	1565.3	831.3	782.8	139.4	151.5	4.7	77.9	389677
1 / 2	去除率	20%	15%	20%	5%	5%	5%	60%	0
	进水	1565.3	831.3	782.8	139.4	151.5	4.7	77.9	389677
缺氧池	出水	1095.7	665.0	391.4	139.4	151.5	4.7	54.6	389677
X	去除率	30%	20%	50%	0	0	0	30%	0
好氧池	进水	1095.7	665.0	391.4	139.4	151.5	4.7	54.6	389677
+MBR	出水	328.7	199.5	117.4	20.9	30.3	0.9	38.2	389677
\$				1/10		\ \K		,5	
		>	1/2		157				<i>,</i>
x	7/15		7/1/5		Z	5		7/15	
	15		75		1			75	
1///		1/	Y		1/1/		1//		1//>

		去除率	70%	70%	70%	85%	80%	80%	30%	0
	X,	进水	328.7	199.5	117.4	20.9	30.3	0.9	38.2	389677
	消毒	出水	328.7	199.5	117.4	20.9	30.3	0.9	38.2	3897
	,///	去除率	0	0	0	0	0	0	0	99%
>	总去除率		83.2%	79.6%	88.0%	85.8%	81.0%	81.0%	80.4%	99.0%
	排放	女标准	500	300	400	45	70	8	50	10000

综上,项目污水处理站处理工艺可行。

6.2.2.5 废水去向可行性论证

项目废水包括屠宰废水、车辆清洗废水、检疫检验废水、锅炉系统排水、循环水系统排水及生活污水,其中锅炉系统排水与循环水系统排水用于厂区抑尘,生活污水经化粪池处理后与屠宰废水、车辆清洗废水、检疫检验废水排至厂区污水处理站,出水满足《肉类加工工业水污染物排放标准》(GB13457-92)表3三级标准、《屠宰及肉类加工工业水污染物排放标准》(二次征求意见稿)表3特别排放限值间接排放限值及沙雅县污水处理厂进水水质要求后,排至沙雅县污水处理厂处理。

沙雅县污水处理厂位于沙雅县城西南方向,服务范围为沙雅县和工业园区,处理对象为服务范围内的生活污水和工业废水,沙雅县污水处理厂工艺采用污水处理采用"吸附混凝沉淀-厌氧水解好氧处理"工艺流程,沙雅县兴雅污水处理有限责任公司2008年获得环评批复,2009年开始建设,设计总规模为10万m2/d,工程建设分3期实施。至2008年7月肥建成2万t/d的处理规模,2018年建成2万t/d,目前沙雅县污水处理厂规模为4万t/d。排污许可证证书编号:91652924568868945T001Q。沙雅县污染处理厂已进行提标改造,工艺为"臭氧催化氧化+硝化+反硝化+滤布过滤+消毒+污泥干化",提标改造后出水水质满足《城镇污水处理厂污染物排放标准》(GB18918-2002)中一级A标准。

本项目距沙雅县污水处理厂 800m, 在污水处理厂收水范围内, 本项目排水量为 294.2m³/d, 在污水处理厂处理负荷余量范围内, 能够满足本项目生产需求。

表 6.2-4 沙雅县污水处理厂进出水水质要求一览表

项目	pН	COD	NH ₃ -N	BOD_5	SS	总氮	总磷	动植物油
进水水质	6.5~9.5	500	45	350	400	70	8	100
出水水质	6~9	50	5(8)	10	10	15	0.5	1

注: 括号外数值为水温>12℃时的控制指标,括号内数值为水温<12℃时的控制指标

6.3 噪声污染防治措施

本工程噪声源主要有电麻机、宰杀设备、刨毛机、分割设备、风机、各类泵 机等辅助设备噪声,项目采取以下控制措施:

本项目机械设备均选用低噪声设备,并在安装时采取基础减震、基础减震等措施,噪声相对较大的设备设单独隔间,风机加装消声器。

采取以上措施后,项目厂界噪声贡献值在41.1~50.2dB(A)之间,满足《工业企业厂界环境噪声排放标准》(GB12348-2008)2类标准要求。综上分析,项目采取噪声防治措施可行。

6.4 固体废物治理措施

6.4.1 项目固体废物治理措施

本项目营运期产生的固体废物包括一般工业固废、危险废物和生活垃圾。项目固废产生情况处置措施如下:

①一般工业固废

待宰圈、内脏处理产生的粪便外售作肥料加工;碎骨、碎肉外售作饲料加工;污水处理站污泥外售堆肥用作农肥;废包装袋外售综合利用;软水制备废树脂又环卫部门统一处理。

②危险废物

项目危险废物包括不合格羊及产品,暂放于隔离间,确诊后急宰暂放于病死 蓄存放间,最后无害化处理,外售用作肥料原料。

③生活垃圾

生活垃圾交由当地环卫部门统一收集处理,不外排。

6.4.2 不合格羊及产品治理措施

按照《病害动物和病害动物产品生物安全处理规程》(GB16548-2006),项目需对不合格羊及产品进行无害化处理。

项目拟在场内自建 1 台化制机对不合格羊及产品进行处理。技术原理:采用高温生物发酵技术原理,利用设备产生的连续 24h 的高温环境实现灭活病原体,利用芽孢杆菌分解的脂肪酶、蛋白质酶降解有机物的特性,实现动物尸体无害化降解处理。设备综合粉碎、杀菌及生物降解等多个同步环节,把畜禽尸体等废弃物快速降解处理为有机肥原料。根据杨军香,许结红等《病死动物高温生物降解无害化处理技术示范》(中国畜禽种业,2015.9),对不合格动物尸体及动物产品

HA THE WAR

W. A.

THE TOTAL PROPERTY OF THE PARTY OF THE PARTY

程环保, 无二次污染; ③变废为宝, 实现农业循环经济, 产出物价值可达 1000 操作简易。

Like the state of the state of

7环境影响经济损益分析

环境经济损益分析是从经济学的角度来分析、预测工程建设项目的环境损益,应体现经济效益、社会效益和环境效益对立统一的辩证关系,环境经济损益分析的工作内容是确定环保措施的项目内容,通过统计分析环保措施投入的资金及环保投资占工程总投资的比例,环保设施的运转费用,削减污染物量的情况,综合利用的效益等,说明建设项目环保投资比例的合理性,环保措施的可行性,经济效益以及建设项目生产活动对社会环境的影响等。

7.1 经济效益分析

项目主要经济指标见表 7.1-1。

表 7.1-1 主要经济指标表

序号	项目	单 位	经济指标	备注
1	总投资	万元	7200	/
2	年销售收入	万元	3000	达产年
3	年均税后利润	万元	1731.3	达产年
4	总投资收益率	%	20.9	税后
5	投资回收期	年人	4.79	税后

从表 7.1-1 可以看出,本项目投产后,可实现年销售收入 3000 万元,年均税后利润 1731.3 万元。本项目总投资收益率 20.9%,说明本项目盈利能力较强。项目达产后,投资回收期为 4.2 年。

因此综合来看本项目经济效益明显, 从经济角度看本项目可行。

7.1 环保投资估算

项目总投资 7200 万元, 其中环保投资 458 万元, 占工程总投资的 6.36%。项目环保设施投资估算见表 7.1-1。

表 9.1-1 环保设施及投资估算

1k	类	型	污染工序	环保措施	投资 (万元)
			锅炉烟气	燃天然气+低氮燃烧器+1 根 15m 高排气筒	20
	营	wix /=	污水处理站废气	密闭收集+生物滤池系统 (1 套) +1 根 15m 高排气筒	22
	运	废气	化制废气	自带除臭装置处理+1 根 15m 高排气筒	20
l'k	期		待宰圈无组织恶臭	增加待宰圈清洗次数,增加羊粪等废弃物 的清理频次,保证通风	10

R						
废水 建设污水处理站,采用"预处理+缺氧+好氧+MBR+消毒"工艺、目处理量 1000m³/d 314 生活污水 化粪池 5 电麻机、宰杀设备、分割设备、风机消声、高噪声设备加装隔设备、风机、各类泵机 声罩、厂房隔声等 30 类便 外售作肥料加工 碎骨肉渣 外售作饲料加工 污泥 外售堆肥用作农肥 不合格羊及产品 无害化处理,最终外售用作肥料原料 放仓装袋 外售综合利用 生活垃圾 由环卫部门统一收集处理 5 风险 见表 5.8-20 22	×	100	屠宰车间无组织恶臭	4///5	5	
废水 生产废水 氧+MBR +消毒"工艺,目处理量 1000m³/d 314 生活污水 化粪池 5 噪声 电麻机、宰杀设备、分割 基础减震、风机消声、高噪声设备加装隔 设备、风机、各类泵机 声罩、厂房隔声等 30 类便 外售作肥料加工 碎骨肉渣 外售作饲料加工 污泥 外售堆肥用作农肥 不合格羊及产品 无害化处理,最终外售用作肥料原料 软水制备 环卫部门统一处理 废包装袋 外售综合利用 生活垃圾 由环卫部门统一收集处理 5 风险 见表 5.8-20 22		5	污水处理站无组织恶臭	池体密闭,污泥及时清运,加强设备管理	8	云
噪声 电麻机、宰杀设备、分割 基础减震、风机消声、高噪声设备加装隔 声罩、厂房隔声等 30 粪便 外售作肥料加工 碎骨肉渣 外售作饲料加工 污泥 外售堆肥用作农肥 不合格羊及产品 无害化处理,最终外售用作肥料原料 软水制备 环卫部门统一处理 废包装袋 外售综合利用 生活垃圾 由环卫部门统一收集处理 5 风险 见表 5.8-20 22		废水	生产废水		314	
噪声 设备、风机、各类泵机 声罩、厂房隔声等 30 粪便 外售作肥料加工 碎骨肉渣 外售作饲料加工 污泥 外售堆肥用作农肥 T合格羊及产品 无害化处理,最终外售用作肥料原料 软水制备 环卫部门统一处理 废包装袋 外售综合利用 生活垃圾 由环卫部门统一收集处理 5 风险 见表 5.8-20 22		11.	生活污水	化粪池	5	
碎骨肉渣 外售作饲料加工 污泥 外售堆肥用作农肥 不合格羊及产品 无害化处理,最终外售用作肥料原料 软水制备 环卫部门统一处理 废包装袋 外售综合利用 生活垃圾 由环卫部门统一收集处理 5 风险 见表 5.8-20 22		噪声			30	公公
碎骨肉渣 外售作饲料加工 污泥 外售堆肥用作农肥 不合格羊及产品 无害化处理,最终外售用作肥料原料 软水制备 环卫部门统一处理 废包装袋 外售综合利用 生活垃圾 由环卫部门统一收集处理 5 风险 见表 5.8-20 22				外售作肥料加丁	////	
固废 不合格羊及产品 无害化处理,最终外售用作肥料原料 软水制备 环卫部门统一处理 废包装袋 外售综合利用 生活垃圾 由环卫部门统一收集处理 5 风险 见表 5.8-20 22		Z/m				
软水制备 环卫部门统一处理 废包装袋 外售综合利用 生活垃圾 由环卫部门统一收集处理 5 风险 见表 5.8-20 22	×		污泥	外售堆肥用作农肥		
废包装袋 外售综合利用 生活垃圾 由环卫部门统一收集处理 风险 见表 5.8-20		固废	不合格羊及产品	无害化处理,最终外售用作肥料原料	1	1
生活垃圾 由环卫部门统一收集处理 5 风险 见表 5.8-20 22	, //>		软水制备	环卫部门统一处理		
风险 见表 5.8-20 22			废包装袋	外售综合利用		
XL' XL' XL' XL'		4	生活垃圾	由环卫部门统一收集处理	5	
合计 458		风险	3,405	见表 5.8-20	22	
	15	7	<u> </u>	合计	458	

7.2 社会效益分析

- (1) 增加财政收入年税费总额为 654.5 万元,对地方经济发展有一定的贡献。
- (2)本项目可以为社会提供80个劳动就业机会,从而提高了区域社会就业率,对发展当地经济、保持社会稳定具有重要意义。

7.3 环境损益分析

7.3.1 环境污染损失分析

由于本项目排放的"三废"和噪声均通过比较完善的污染控制措施进行了妥善处理,达到国家排放标准和区域环境规划的目标,对周围环境的影响较小。这里通过收取环保税来估算经济损失,计算标准参照《中华人民共和国环境保护税法》(2018.1.1)及新疆环保税适用税额。

项目固废处置符合国家有关规定,不收取环保税,而且不涉及噪声污染及征收超标环保税,项目废水全部综合利用,不外排水体,因此只进行废气环保税的计算。项目污染物排放量及环保税见表 9.3-1。

表 9.3-1 项目环保税计算

	////= 5`			-////		
污染	污染因子	污染当量值	每当量收	项目污染排放量	污染排放	项目环保税
类型	75条囚丁	(千克)	费标准(元)	(千克/年)	当量	(万元/年)
1/2	NH ₃	9.09	1.2	286	8.4	0.001
	H ₂ S	0.29	1.2	29	102.8	0.012
废气	非甲烷总烃	0.95	1.2	7	1/4	
Zi	SO_2	0.95	1.2	456	7/1/3	
1	NO _x	0.95	1.2	767	13.7	0.002
		1/1/2	合计	.,1		0.015

因此,项目实施后,应缴纳环保税约0.015万元。

7.3.2 环保投入分析

项目环保设施投资估算见表 9.3-2。

(1) 环保投资占总投资的比例(HJ)

$$HJ = \frac{HT}{JT} \times 100\%$$

式中: HT--环保投资, 万元;

JT —总投资,万元。

本项目总投资为7200万元,环保投资为458万元,故HJ为6.36%。

(2) 投资后环保费用占工业总产值的比例(HZ)

项目投产后的环保费用采用下面公式来估算:

$$HF = \sum_{i=1}^{n} CH + \sum_{k=1}^{m} J$$

式中: CH—"三废"处理成本费,包括"三废"处理的材料费、运行费,万元/年;

「一"三废"处理车间经费,包括每年环保设备维修、管理、折旧费, 技术措施及其他不可预见费,万元/年;

i —成本费用的项目数;

k—车间经费的项目数。

根据估算:

- ①项目每年用于"三废"治理的费用按环保投资费用的 8%计,则总的 CH 为 38.2 万元/年;
- ②车间经费中,环保设备维修、管理费用按 50 万元/年计,环保设备折旧年限为 15 年,则折旧费用为 45.1 万元/年,技术措施及其他不可预见费用取 80 万

元/年,故 J=175.1 万元/年。

投产后的年环保费用总计为 HF=213.3 万元

7.3.3 环境收益分析

环境收益即工程采取环保措施后挽回的经济损失,按照《中华人民共和国环 境保护税法》(2018.1.1)及新疆环保税适用税额,计算采取环保措施后可以减少 缴纳的环保税,经估算废气和废水可以挽回经济损失 140.8 万元。

7.3.4 环境经济损益分析

环境经济损益分析见表 7.3-3。

表 7.3-3 环境经济损益分析表

(单位: 万元/a)

环境污染损失	环保投入	环境收益	损益分析
-0.015	-213.3	+140.8	-72.51

注:"+"表示受益,"-"表示损失

由上表可知,项目环境损益估算为-72.51 万元/a。

7.3.5 环境成本和环境系数

(1) 年环境代价

年环境代价 Hd 即为环境损益估算,项目为 72.51 万元/年

(2) 环境系数

环境系数是指年环境代价与年工业产值的比值,即 Hx=Hd/Ge,本项目年工 业产值按年均利润总额 GE 为 1743.65 万元,因此,本项目的环境系数为 0.04, 环保措施经济技术可行。

7.4 小结

项目的实施对当地的经济发展也有一定的促进作用,对缓解当前社会普遍存 在的就业紧张的状况有一定的益处。通过本项目生产过程中采取的废气、废水及 噪声治理等措施后, 大幅度降低项目污染物排放量, 减轻各种污染物排放对环境 和人体健康的不利影响,且新增环保投资占全厂年均利润总额比例较少。从环境 经济损益分析角度分析,该项目是可行的。

8环境管理与监测计划

为了贯彻执行国家和地方环境保护法律、法规、政策与标准,及时掌握和了解污染控制措施的效果,以及项目所在区域环境质量的变化情况,更好地监控环保设施的运行情况,协调与地方环保职能部门和其它有关部门的工作,同时保证企业生产管理和环境管理的正常运作,建立环境管理体系与监测制度是非常必要和重要的。

环境管理体系与监测机构的建立能够帮助企业及早发现问题,使企业在发展 生产的同时节约能源、降低原材料消耗,控制污染物排放量,减轻污染物排放对 环境产生的影响,为企业创造更好的经济效益和环境效益,树立良好的社会形象。

8.1 环境管理

企业环境管理的基本任务是以保护环境为目标,清洁生产为手段,发展生产与经济效益为目的,可以促进企业的生产管理、物资管理和技术管理,使资源、能源得到充分利用,降低企业能耗、物耗,减少污染物排放总量,起到保护环境,改善企业与周围群众的关系,同时也使企业达到提高经济效益的目的。

8.1.1 环境管理机构

建设项目环境保护管理是指项目在施工期、运营期执行和遵守国家、省、市的有关环境保护法律、法规、政策和标准,接受地方环境保护主管部门的环境监督,调整和制定环境保护规划和目标,把不利影响降低到最低限度,加强项目环境管理,及时调整工程运行方式和环境保护措施,最终达到保护环境的目的,取得更好的综合环境效益。

沙雅县金胡杨畜牧养殖有限责任公司设有专门的环境保护管理部门,该部门是集企业环境管理和污染防治为一体的综合性职能机构,公司组成以总经理为首的环境管理机构。

8.1.2 环境管理机构的设置

沙雅县金胡杨畜牧养殖有限责任公司设专职环保管理人员负责全厂的环境管理、污染源治理及监测管理工作。

(1) 施工期环保管理机构设置

建设单位配备一名具有环保专业知识的工程技术人员,专职负责施工期的环境保护工作;施工单位应设置一名专职或兼职环境保护人员。

(2) 运营期环保管理机构设置

项目运营期环保管理机构最高负责人为公司总经理,各项治理设备要做到建制齐全。具体环境管理机构人员设置及职责。

8.1.3 施工期环境管理

为加强施工现场管理,防止施工扬尘污染和施工噪声扰民,本评价对项目施工期环境管理提出如下要求:

- (1)项目应配备 1 名具有环保专业知识的技术人员,专职或兼职负责施工期的环境保护工作,其主要职责如下:
- ①根据国家及地方政策有关施工管理条例和施工操作规范,结合项目的特点,制定施工环境管理条例,为施工单位的施工活动提出具体要求;
 - ②监督、检查施工单位对条例的执行情况;
- ③受理附近居民对施工过程中的环境保护意见,并及时与施工单位协商解决;
 - ④参与有关环境纠纷和污染事故的调查处理工作。
 - (2) 施工单位设置一名专职或兼职环境保护人员,其主要职责为:
- ①按建设单位和环境影响评价要求制定文明施工计划,向当地环保行政部分提交施工阶段环境保护报告。内容应包括:项目进度、主要施工内容及方法、造成的环境影响评述以及减缓环境影响措施的落实情况;
 - ②与业主单位环保人员一同制定项目施工环境管理条例;
 - ③定期检查施工环境管理条例实施情况,并督促有关人员进行整改;
- ④定期听取环保部门、建设单位和周围居民对施工污染影响的意见,以便进 一步加强文明施工。

8.1.4 运营期环境保护管理

(1) 环境管理机构

根据国家有关规定要求,为切实加强环境保护工作,搞好全厂污染源的监控, 环境保护管理应采取总经理负责制,并配备专职环保管理人员 5~10 人,负责项目的环保工作。

- (2) 环境管理的职责及工作内容
- ①贯彻执行《中华人民共和国环境保护法》及其有关法律、法规,按国家的环保政策、环境标准及环境监测要求,指定环境管理规章制度,并监督执行;
 - ②掌握本企业各污染源治理措施工艺、设备、运行及维护等资料,掌握废物

综合利用情况,建立污染控制管理档案及废气、废水控制系统管理台账;

- ③制定生产过程中各项污染物排放指标以及环保设施的运行参数,并定期考核统计;
- ④推广应用先进的环保技术和经验,组织开展环保专业技术培训,搞好环境保护的宣传工作,提高全厂人员的环境保护意识;
- ⑤监督项目环保设施的安装、调试等工作,坚持"三同时"原则,保证环保设施的设计、施工、运行与主体工程同时进行;
 - ⑥组织开展本单位环境保护专业技术培训,提高人员素质;
 - ⑦认真落实企业污染物排放总量控制指标,解决落实过程出现的问题。

8.2 环境监测计划

建设项目环境监测是工业污染源监督管理的重要组成部分,是国家和行业管理部门了解并掌握排污状况和污染趋势的手段。监测数据是执行相关的环境保护法规、进行环境管理和污染防治的依据。因此,应建立完善建设项目的环境监测管理机构。

8.2.1 污染源监测计划

参照关于印发《国家重点监控企业自行监测及信息公开办法(试行)》和《国家重点监控企业污染源监督性监测及信息公开办法(试行)》的通知(环发[2013]81号),同时依据《排污许可证申请与核发技术规范 农副食品加工工业—屠宰及肉类加工工业》(HJ860.3—2018)中的有关规定要求,针对本项目产排污特点,制定本项目的监测计划,项目环境监测计划见表 8.2-1。

表 8.2-1 项目污染源监测工作计划

		<u> </u>	*/A
类别	监测位置	监测因子	监测频率
2	化制废气排气筒	非甲烷总烃	1 次/半年
废气	污水处理站排气筒	NH ₃ 、H ₂ S、臭气浓度	1 次/年
友一	锅炉排气筒	NO _x 、SO ₂ 、颗粒物	1 次/年
	项目厂界	NH ₃ 、H ₂ S、臭气浓度	1 次/半年
		流量、pH、COD、氨氮、总氮、总磷、总磷	在线监测
废水	项目污水处理站排水口	BOD ₅ 、SS、动植物油、大肠 菌群数	1 次/季度
	地下水	pH、耗氧量、氨氮、溶解性 总固体、硝酸盐氮、亚硝酸	2 次/年

ZL.	25	7/1/3	盐氮、总磷、总大肠菌群、 菌落总数	
噪声		厂界	等效连续 A 声级 1	次/年

8.3 排污口规范化设置

根据国家标准《环境保护图形标志—排放口(源)》和国家环保总局《排污口规范化整治要求(试行)》的技术要求,企业所有排放口,包括水、气、声、固体废物,必须按照"便于计量监测、便于日常现场监督检查"的原则和规范化要求,设置与之相适应的环境保护图形标志牌,绘制企业排污口分布图,对治理设施安装运行监控装置。排污口的规范化要符合阿克苏市环境监测部门的有关要求。

- (1) 在各排污口处设立较明显的排污口标志牌,其上应注明主要排放污染物的名称。
- (2)如实填写《中华人民共和国规范化排污口标志登记证》的有关内容,由环保主管部门签发登记证。
- (3)将有关排污口的情况如:排污口的性质、编号、排污口的位置;主要排放的污染物种类、数量、浓度、排放规律、排放去向;污染治理设施的运行情况等进行建档管理,并报送环保主管部门备案。
- (4)按照排污口规范管理及排放口环境保护图形标志管理有关规定,在排污口附近设置环境保护图形标志牌,根据《环境保护图形标志》实施细则,填写本工程的主要污染物;标志牌必须保持清晰、完整,发现形象损坏、颜色污染或有变化、退色等不符合图形标志标准的情况,应及时修复或更换,检查时间至少每年一次。
- (5) 排放口规范化整治要遵循便于采集样品、便于监测计量、便于日常监督管理的原则,严格按排放口规范化整治技术要求进行。
- (6)环境保护图形标志牌设置位置应距污染物排放口及固体废物堆放场或 采样点较近且醒目处,设置高度一般为标志牌上缘距离地面约2m。

环境保护图形标志在厂区的废水排放口、废气排放源、固体废物贮存处置场应设置环境保护图形标志,图形符号分提示图形和警告图形符号两种,分别按GB15562.1-1995、GB15562.2-1995 执行。环境保护图形符号见表 8.3-1。

项目环境保护图形符号 表 8.3-1

	表 8.3-1 项	目环境保护图形符号	一览表		
	序号 提示图形符	等号 警告图形符号	名称	功能	
			废气排放口	表示废气向大气环境排放	
	2		般固体废物	表示一般固体废物贮存、处场	
	3)((噪声排放源	表示噪声向外环境排放	
A THE STATE OF THE	4		危险废物	表示危险废物贮存、处置均	

8.4 排污许可证管理要求

根据《固定污染源排污许可分类管理名录(2019年版)》,本项目属于实施重 点管理的行业。建设单位应按照环水体《排污许可证管理暂行规定》、《排污许可 管理办法(试行)》、《固定污染源排污许可分类管理名录(2019年版)》等排污 许可证相关管理要求,在规定时限内执行排污许可证。

日常环境管理中,建设单位需严格按照排污许可证中执行报告要求定期上报, 上报内容需符合要求;建设单位需严格按照自行监测方案开展自行监测;建设单位 需严格排污许可证中环境管理台账记录要求记录的相关内容,记录频次、形式等需 满足排污许可证要求;建设单位需按照排污许可证要求定期开展信息公示。

公 .产为开展 169 将排污许可证执行报告、台账记录以及自行监测执行情况等作为开展可能产生 的建设项目环境影响后评价的重要依据。

8.5 污染物排放清单

8.5.1 环保信息公示

(1) 公开内容

少季础信息 企业名称:沙雅县屠宰加工厂建设项目 负责人:陈刚 生产地址:沙雅县民富^{★+} 联系方式: '´

②排污信息

建设项目 ...:沙雅县民富村 联系方式: 15099293178 主要产品及规模: 年屠宰肉羊 30 万只。 ②排污信息 少雅县屠宰加工厂建设项目排放的" 〉雅县屠宰加工厂建设项⁻ 环境监测计划 准县同 沙雅县屠宰加工厂建设项目排放的污染物种类、排放量见表 3.10-4 至 3.10-7。 沙雅县屠宰加工厂建设项目污染物排放标准见表 2.5-5、 2.5-6。 ③环境监测计划 沙雅县屠宰加工厂建设项目污染物排放标准见表 2.5-5、 2.5-6。

(2) 公开方式及时间要求

公开方式: 通过公司网站、信息公开平台或当地报刊等便于公众知晓的方式 公开。

公开时间要求:环境信息有新生成或者发生变更情形的,应当自环境信息生 成或者变更之日起三十日内予以公开。法律、法规另有规定的,从其规定。

8.5.2 环境管理台账

沙雅县屠宰加工厂建设项目应按照有关要求,及时并如实记录项目原辅材料 的消耗量及固废产生量等相关内容的环境管理台账,供环保检查。

8.5.3 污染物排放清单

项目污染物排放情况见下表。

表 8.5-1 污染物排放清单——主体工程

		A THE STREET			A 'N'	
	序号	项目		沙雅县屠宰加工厂	建设项目	
7,500.5	1-, 4	工作方式	3,105	连续生产	J. 405	7/1/25
7	2	设备	宰杀放血输送线	、刺杀站台、预剥线、	扯皮机、羊蹄剪、洗肚	上机、
		以田	输送机、褪毛机	几、燎毛机、分割台、	锯骨机、热缩机、包装	支机
200	3	运行时间	100	300 夫		200
	4	产品及产能		年屠宰肉羊 30	万只	
4015	5 4	原料	4/115	肉羊 30 万月	· /////////	4015
X	N. Y.	<i>,</i>	X	N. Y.	X	A. W.
1		1	/	1		1
100		JON.	JOA	,tox	ilon	dos
W. Klas		(1) K(0)	W. Klan		W/c	1/4/02
2/10-	2//		Zim-	170	4/11=	2/10-
XL	XL	9	XL	X	XLYS	X
			7			
7	The state of the s		7	Y	X	X

Z. Aller																			A
7 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7	1K			1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			A A	(35)							\$\(\frac{1}{2}\)	
42	表 8	.5-2	项目废气	行染		2(:>						100		1/2		100	1		
	类别 设备/工序	污染源 名称	主要污染因子	废气 量 m³/h	产生 mg/m ³	情况 kg/h	环保措施	排 数目	气筒参数 高度 m	数 内径 m	排放 方式	规律 温度℃	排放 mg/m³	t情况 kg/h	执行标准 mg/m	达标 作业 分析时间 h	排放量 t/a	确定 依据	
17.73	1	锅炉	SO ₂		37.1	0.18	低氮燃烧+15m		1	/>/			37.1	0.18	50	达标 2400	0.432	物料衡算	
1	锅炉	烟气	NO _X 颗粒物	4850	64.7	0.32	排气筒 P1	1	15	0.2	连续	80	64.7	0.32	150	达标 2400 达标 2400	0.753 0.116	类比法 类比法	Ť
		1/4	H ₂ S	4	1.6	0.0048	1/4			-			0.16	0.0005	0.33kg/h	达标 2400	0.001	类比法	Ŋ
7/1/35	化制	化制	NH ₃	3000	4	0.012	生物滤池+15m	1	15	0.2	连续	100	0.4	0.0012	4.9kg/h	达标 2400	0.003	类比法	XL!
1773	1	废气	臭气浓度 非甲烷总烃		4000 (无量纲) 10	排气筒 P2		10	/>			1500 (无量纲) 0.03	2000 (无量纲) 120 (10kg/h)	达标 2400 达标 2400	0.007	类比法 类比法	
		污水处	H ₂ S		42.8	0.07	池体密闭+生					100	0.1	0.0003	0.33kg/h	达标 2400	0.008	系数法	
	1万水外埋 1	理站废	NH ₃	5000	53.0	0.08	物滤池+15m排	1	15	0.2	连续	100	1.6	0.008	4.9kg/h	达标 2400	0.213	系数法	
7/05	7	705	臭气浓度	ZI	5.4	0.009	气筒 P3			Ži	<u> </u>		1800 (无量纲) 0.002	2000(无量纲)	达标 2400	 Z	类比法 系数法	Z, 7//
		待宰圈	H ₂ S NH ₃	-		0.002		上次数	,增加	主				0.002	H ₃ S 厂界≤0.06	达标 达标	NH ₃	类比法	
, ,	6.	无组织				<20(无	等废弃物的清理				连续	20		<20(无量	NH ₃ 厂界≤1.5	2400	0.070 H ₂ S		N.Y
	厂区无组 织	废气	臭气浓度		4	量纲)		Klas			~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			纲)	臭气浓度厂界	达标	0.02	类比法	
7/1/25		屠宰车	H ₂ S		//^)` (//.5	0.006	及时清理屠宰车	三间内	胃肠容物	物等	(25) (25)			0.006	≤20 (无量纲) SO ₂ 厂界≤0.40	达标	颗粒物	类比法	_4//
		间	NH ₃ 臭气浓度	17		<20(无 量纲)	废弃物;增加清 风	情洗处 次数	理,增加	加通	连续	20	N. A.	<20(无 量纲)			0.024 SO ₂	类比法	
			40		,)		
7/05		4/175		3	(1)5		4/17.5	/		17	1			1/05	4	7.5		401.5	4//
		N. I.				1				**	Y S			Ţ				>	

405		405		4//		4/15	. 4	705		4	125 A REAL PROPERTY OF THE PARTY OF THE PART	40			AM25-	5
		7	1K		ľ								/			
		4/5	颗粒物 SO ₂ NO _X		0.01 0.01 0.006						0.01 0.01 0.006	, s	达标 达标 达标	0.024 NO _X 0.014	类比法 类比法 类比法	>
77/15-		污水处理 站无组织	H ₂ S	Ž,		池体密闭,污泥及时汽	青运,加强	连续	20	-X1	0.0003		达标 达标 2400	N. A.	系数法	
	表 8.	废气	臭气浓度 项目废水	 :污染源	<20(无 量纲) 产生浓度一	设备管理 览表					<20(无 量纲)		达标		类比法	>
4/175		4/175	废水	量	25	主要污染	物(mg/L,	除大胆	- 	个/L、pH	外)	4//	25		4/175	

表 8.5-3 项目废水污染源产生浓度一览表

	废气	臭气浓度		20(九)	育理	10A		0(尤 纲)	达标	类比法		
	表 8.5-3	项目废水污染		**	Kles	(I) KIN		L. Kley				
3/105	废水种类	废水量	405	121 14	要污染物(mg/L	,除大肠菌群/	1 71 17	/ 	2/05	废水去向		3,4/1
7		(m^3/d)		BOD ₅ SS	NH ₃ -N	总氮 总硕	- CV	总大肠菌群数	pH			1
	屠宰废水 车辆清洗废水	286.6	2000	1000 1000 80 200	150	163 5	200	40 万	6.5~7.5	进入项目污	<u></u>	
	检疫检验废水	XY/3	14//	200 200		/	/	6000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	消毒 水处理站		
2/10=	生活污水	5.1	350	170 150	30	40 6	4/0-	<u> , , , , , , , , , , , , , , , , , ,</u>		化粪池		4//
X	锅炉系统排水	1 3		50	- 4		X-V	- X	6~8	泼洒抑尘		N. N.
	循环水系统排水	0.1		50	-1			-1/	6~8	1		
	混合废水(进入厂	294.2	1956.6	978.0 978.5	146.7	159.5	194.8	39 万	27h	圣项目污水处理站处 理后排至沙雅县污水		
	污水处理站的废力	k)					4			处理厂		N
Z Z	Z. Z.	, Zi	405	7/1/35	Z	4035	Z. Wij	, Zi	105	7/1/35		ŽL.
\' .///	<u>'\'</u>	Jan 1	.1/17/	'\	/n_	.10_		.///	.///	· \/	, ?^	
		14/02			X (4)			14/40				
4/05	7/1/25) ~	4/125	-1,4/05	.7/	172	-,4/15	7	2/05	-1,405		-,4/
**			>			>	1	1	-1	1		135

北水原ル港

	1			1/2				1	1		11			
	:	表 8.5-4 项	目废水污染源源	强核算组	与果及相关	参数一览表	100	<u> </u>	40		100			
	亨号	产污节点	污染源	废水量 (m³/d)	污染 因子	污染物 浓度(mg/L)	产生量 产生量(kg/d)	处理措施	排放 浓度 (mg/L)		排	‡放去向		4//
N. A.	16			1 _K	pH COD	6~8(无量纲) 1956.6	0.576		6~8(无量纲) 328.7	29.012	1 N		1	7
	>	混合污水(屠宰	夏安加丁		BOD ₅ SS	978.0 978.5	0.288 0.288		199.5 117.4	17.609 10.363				
	1	废水、车辆清洗	屠宰加工、车辆清 洗、检疫室、职工 生活	294.2	NH ₃ -N 总氦	146.7 159.5	0.043 0.047	厂区污水 处理站	20.9	1.846 2.674	沙雅县	以污水处理 厂	>	
	J:	変水、生活污水)		ı́κ	总磷 动植物油	5,0 194.8	0.001 0.057		0.9 38.2	0.083 3.370	1K			
	>				总大肠菌群 数	39万(个)	11463.2 万		3897	343.929 万				A
	3	锅炉系统排水 循环水系统排水	锅炉系统 循环水系统	0.1	SS S	50	0.05	1 4/	/	0	Γ⊠	【泼洒抑尘	2	
	li,			The state of the s			100		Jan 1		TO TO	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
HA MISTORIAN TO THE PARTY OF TH	, lí			J.		He.				X TO	Kle,	A TOTAL		A A
A Aller Market) I						173							

项目固体废物排放清单

			**				
	表	8.5-5 项目固]体废物排放	清单	单位: t/a		
	序号	污染工序 待宰圈、内脏处理	污染物 粪便	产生量 603	处置措施 外售作肥料加工	排放量	
	2	屠宰加工 污水处理站	碎骨、碎肉 污泥	206 171.8	外售作饲料加工 外售堆肥用作农肥	0	
7,1115	4 5	包装软水制备	废包装袋 废树脂	2 0.5t/次	外售综合利用 环卫部门统一处理	0	
	8	生活垃圾 8.5-6 危险 废	生活垃圾 ** ** ** ** ** ** ** **	12 处置措施	环卫部门统一处理 单位:t/a	0	**
420	序危	险 危险废 危险废	- //	>	/ 上 主要 有害 产废 危险 污	染物防	

表 8.5-6 危险废物产生量与处置措施

单位: t/a

XLIV	5		館 ス	医	0.5t/{	Λ	沙	已部门多	亡一处:	理	0	I IX		
	6	生活垃:	圾 生	上活垃圾	12	(F)	环]	卫部门 约	一处:	理	0			1
<i></i>			危险废物	产生量	与处置 指	昔施		单	位: 1	t/a	· K	7	A.	
	序号 名				江序及 装置	形态	主要成分	有害 成分	产废周期	危险 特性	污染物防 治措施	4		
		羊 医疗废 物	HW841- 003-01	6 检》	变过程	固体		病死 羊、不 合格产 品	偶发	感染性	暂前,等所以为人。 等所,等不是,是是,是是是一个。 等,是是是是一个。 等。 等。 等。 等。 等。 等。 等。 等。 等。 等。 等。 等。 等。			1
	N. A.				1K	N. T.	3-1	IK	N. A.		料原料	7	"5"	1
A TOP THE REAL PROPERTY OF THE PARTY OF THE								No.	E A			A A)
	X.*X			1/25		A.			A A	405			15 The state of th)
						A A			X			A A	15 The state of th)
						174			XX			A A)

北水原州湖

A Aller Disk							
		保护三同时 环境保护"三同 近 项目环 污染源		/YA `I /YA `I	验收指标 颗粒物≤20 mg/m³;	验收标准《锅炉大气污染物排放标准》	
A Aller Market	有等	>	NO _X 、SO ₂ 、 颗粒物 NH ₃ 、H ₂ S、臭 气浓度、非甲	低氮燃烧+15m 排气筒 P1 生物滤池+15m 排气筒 P2	製	(GB13271-2014)表3大气 污染物特别排放限值燃气锅 炉标准 《大气污染物综合排放标准》 (GB 16297-1996)表2标准	
A Aller De	人 大	气 组 待宰圈无组织	*******************	池体密闭+生物滤池+15m 排气筒 P3 曾加待宰圈清洗次数,增加羊粪等废弃物的清	NH ₃ 排放速率≤4.9kg/h; H ₂ S 排放速率≤0.33kg/h; 臭气浓度≤2000 (无量纲) NH ₃ 厂界一次最大浓度值≤1.5mg/m ³ ; H ₂ S 厂界一次最大浓度值≤0.06mg/m ³ ;	《恶臭污染物排放标准》 (GB14554-93)表2标准 《恶臭污染物排放标准》	
A Aller St.	废气 无线	组 屠宰车间无组	恶臭浓度 H ₂ S、NH ₃ 、 恶臭浓度、 NO _X 、SO ₂ 、 颗粒物	理频次,保证通风 及时清理屠宰车间内胃肠容物等废弃物,增 加清洗处理,增加通风次数	臭气浓度 \leq 20(无量纲) $NH_3 \Gamma 界 - 次最大值 \leq 1.5 mg/m^3 \ H_2S \Gamma$ 界 - 次最大值 \leq 0.06 mg/m³ 臭气浓度 \leq 20(无量纲) $颗粒物周界外浓度最高点 \leq 1.0 mg/m³;$	(GB14554-93)表1标准; 《恶臭污染物排放标准》 (GB14554-93)表1标准 《大气污染物综合排放标准》	
				175			

	项目	污染源	污染物	治理措施	`	验收指标	À .	验收标准	/	
405		污水处理站无 组织恶臭	H ₂ S、NH ₃ 、 恶臭浓度	池体密闭,污泥及时清运	,加强设备管理	SO ₂ 周界外浓度最高点 <no<sub>x周界外浓度最高点</no<sub>	_	(GB 16297-1996)表 2 织排放限值限值	2 无组	4//
			pH、COD、 BOD ₅ 、氨氮、							
		有辛 /	SS、总氮、总 磷、动植物油、 总大肠菌群数					《肉类加工工业水污珠		
A A A A A A A A A A A A A A A A A A A	ris .l.	车辆清洗废水	pH、COD、 BOD ₅ 、氨氮、	生活污水经化粪池处理后与 青洗废水、检疫检验废水排站,污水处理站设计处理规	‡至厂区污水处理 型模 1000m³/d,采	氨氮≤45mg/L; 总氮≤	≤400mg/L; ≤70mg/L;	放标准》(GB13457-92 三级标准、《屠宰及肉参 工业水污染物排放标准	类加工 :》(二	
	废水	检疫检验废水	pH、COD、 BOD₅、SS、 总大肠菌群数	用预处理+缺氧好氧+MBR- 达标后最终排至沙雅县污		总磷≤8.0mg/L; 动植物: 粪大肠菌群数≤100		次征求意见稿)表3间排限值要求及沙雅县污水 厂进水水质要求		29/
		生活污水	pH、COD、 BOD₅、氨氮、 SS							
		锅炉系统排水、循环 水系统排水	SS	泼洒抑尘		不外排		不外排		
	噪声	主产设备、各类泵机	采用低噪声设行	备,采取基础减振、高噪声 风机消声、厂房隔声等措)	设备加装隔声罩、施	厂界 昼<60dB(A),夜<5	50dB(A)	《工业企业厂界环境》 放标准》(GB12348-20 2 类标准		
A 100 - 100					176					

							105	
项	国 污染源 羊粪集中收集后外	污染物	治理措施 图渣集中收集后定期外	■	验收指标	外售做肥料	验收标准	
4/175	废 加工;污泥经浓缩	音脱水后外售堆肥用作 农		部门统一收集处理	TAX HAVE LITERAL TO A CONTROL OF THE	71 11803011	不外排	4//
	渗							

9结论

9.1 建设项目情况

(1) 项目概况

沙雅县金胡杨畜牧养殖有限责任公司沙雅县屠宰加工厂建设项目位于沙雅县民富村。项目占地面积 94708m²,总投资 7200 万元,其中环保投资 458 万元,占工程总投资的 6.36%。项目劳动定员为 80 人,年工作 333 天,每天工作 8 小时。

(2) 项目选址

项目建设地点位于沙雅县民富村,厂址中心地理坐标为东经 82 43′22.17″, 北纬 41 8′19.69″。厂区东南侧为排碱渠,其余为空地。项目周边 2.5km 范围内无 重点文物保护单位和自然保护区等敏感点。

(3) 建设内容

项目主要建设内容包括屠宰车间、待宰圈、物料库、排酸间、速冻库、成品冷库及其它配套附属设施。

(4)产业政策符合性

项目对照《产业结构调整指导目录(2019年本)》,属于其中的鼓励类:"一、农林业,32、农林牧渔产品储运、保鲜、加工与综合利用",不属于其中的限制类:"十二、轻工,32、年屠宰生猪 15 万头及以下、肉牛 1 万头及以下、肉羊 15 万只及以下、活禽 1000 万只及以下的屠宰建设项目(少数民族地区除外)",且不属于其中的淘汰类:"30、桥式劈半锯、敞式生猪烫毛机等生猪屠宰设备 31、猪、牛、羊、禽手工屠宰工艺"。 2021年 11月 8日,沙雅县发展和改革委员会为本项目出具《阿克苏地区沙雅县企业投资项目登记备案证》(备案证编号:2111-652924-20-01-704128),项目建设符合国家产业政策。

(5) 项目衔接

①给排水

给水

本项目新鲜水采用沙雅县循环经济工业园区集中供水,可以满足项目需求。 项目用水包括屠宰加工用水、车辆清洗用水、检验检疫用水、锅炉系统用水、循 环水系统用水及生活用水。

排水

项目锅炉系统排水及循环水系统排水用于厂区泼洒抑尘;项目屠宰废水、车辆冲洗废水、检疫检验废水及职工生活污水经厂内污水处理站处理后排至沙雅县污水处理厂处理,满足《肉类加工工业水污染物排放标准》(GB13457-92)表3三级标准、《屠宰及肉类加工工业水污染物排放标准》(二次征求意见稿)表3特别排放限值间接排放限值及沙雅县污水处理厂进水水质要求后,最终排入沙雅县污水处理厂进行深度处理。

2供电

由阿克苏经济技术开发区供电网供电,厂区设 200kVA 变电器 1 台,年用电量为 342 万 kW h。

③供热

项目厂区设锅炉房 1 座,设置 6t/h 燃天然气锅炉 1 台,用于厂区生产用热及生活用热。

4)制冷

项目采取氟利昂制冷系统,包括速冻制冷系统、冷藏制冷系统、排酸制冷系统、分割制冷系统,制冷剂采用 R134A,总制冷负荷为 2650kW。

9.2 环境质量现状

(1) 空气环境质量现状

现状监测表明:各监测点 H₂S、NH₃ 均满足《环境影响评价技术导则 大气环境》(HJ2.2-2018) 附录 D 中相关标准,非甲烷总烃满足《大气污染物综合排放标准详解》中相关要求。

(2) 声环境质量现状

现状监测表明, 厂界昼间噪声为 47.8~53.7dB(A), 夜间在 38.2~38.8dB(A), 厂界符合《声环境质量标准》(GB3096-2008)中 2 类标准要求, 声环境质量较好。

9.3 污染物排放情况

项目建设完成后总量控制指标为: SO2: 0.456t/a、NOx: 0.767t/a, COD: 4.413t/a、氨氮: 0.441t/a。

9.4 主要环境影响

(1) 大气环境影响

由估算结果可知,污染物浓度占标率<10%,各类污染物对地面的贡献浓度 均较小,对环境空气不会产生明显的影响,因此项目运营后对周围大气环境影响 很小。各类污染物均满足相应要求。

综上所述,项目实施后不会对区域大气环境产生明显影响。

(2) 水环境影响

项目锅炉系统排水及循环水系统排水用于厂区泼酒抑尘;项目屠宰废水、车辆冲洗废水、检疫检验废水及职工生活污水经厂内污水处理站处理后排至沙雅县污水处理厂处理,满足《肉类加工工业水污染物排放标准》(GB13457-92)表3三级标准、《屠宰及肉类加工工业水污染物排放标准》(二次征求意见稿)表3特别排放限值间接排放限值及沙雅县污水处理厂进水水质要求后,最终排入沙雅县污水处理厂进行深度处理。项目无废水直接排入地表水体,对地表水环境无影响。

本次地下水评价,在搜集大量当地的历史水文地质资料的基础上,通过运用解析法对正常状况下和非正常状况情景下污染物穿过包气带直接进入潜水含水层开始运移的模拟和预测,分析项目建设对项目场地周边区域地下水环境的影响,结果显示:正常状况下,污染物渗入地下的量极小,对项目场地周边地下水环境造成影响的可能性较小;非正常状况下,泄漏污染物对泄漏源周围小范围地下水环境造成污染,但影响范围未超出厂界。项目严格按照相关规范要求采取防渗措施后,从环境保护角度讲,该项目建设对地下水环境影响可以接受。

(3) 声环境影响

项目建成后,噪声源对厂界的贡献值满足《工业企业厂界环境噪声排放标准》 (GB12348-2008)2 类标准要求。

(4) 固体废物境影响

项目所有固体废物均得到妥善处置和综合利用,不直接排入外环境,不会对 周边境产生不良影响。

9.5 环境保护措施

(1) 废气

①锅炉烟气

本项目设置 1 台 6t/h 燃气锅炉,燃料为天然气,项目锅炉采用低氮燃烧器,通过部分燃烧烟气循环燃烧,采取以上措施后,本项目燃气锅炉废气排放污染物均满足《锅炉大气污染物排放标准》(GB13271-2014)表 3 中燃气锅炉排放限值要求。

②化制废气

项目采用化制设备进行不合格肉羊及产品进行无害化处理,不合格肉羊及产

品在该设备粉碎及无害化处理过程中会产生恶臭气体,污染物主要为非甲烷总烃、H₂S、NH₃、臭气浓度,该设备为整体密闭一体化设备,产生的废气由自带的除臭装置处理后由 1 根 15m 高排气筒排放,NH₃、H₂S 排放满足《恶臭污染物排放标准》(GB14554-93)中的二级新建标准要求,非甲烷总烃排放满足《大气污染物综合排放标准》(GB 16297-1996)表 2 标准限值要求。

③污水处理站废气

污水处理站废气污染源主要是污水处理过程散发出来的恶臭气体,污染物以 NH_3 、 H_2S 、臭气浓度为主,本项目污水处理站加盖密闭,对产生的恶臭气体集中收集后处理,处理后的废气通过 15m 高排气筒排放, H_2S 、 NH_3 、臭气浓度排放满足《恶臭污染物排放标准》GB14554-93 中的二级新建标准要求。

4年产区无组织废气

项目生产区恶臭主要包括待宰圈产生的恶臭及屠宰车间产生的恶臭以及少量燎毛废气,污染物主要为 H₂S、NH₃、臭气浓度、颗粒物、SO₂、NO_x。为减少恶臭对周围环境的影响,结合《排污许可证申请与核发技术规范 农副食品加工工业一屠宰及肉类加工工业》(HJ860.3-2018)中相关要求,要求建设单位增加对待宰圈清洗次数,增加羊粪等废弃物的清理频次,保证待宰圈通风,同时增加屠宰车间的通风次数,及时清理屠宰车间内胃肠容物等废弃物,最大限度减少本项目生产区恶臭排放,采取以上措施后,屠宰车间及待宰圈 NH₃、H₂S、臭气浓度排放满足《恶臭污染物排放标准》(GB14551-93)表 1 中标准要求。

燎毛处理工序会产生少量燃烧废气,通过采取燎毛后增加清洗处理,增加通风次数等措施后,可有效减少污染物产生量,采取以上措施后,燎毛后产生的 SO_2 、 NO_X 、TSP 排放满足《大气污染物综合排放标准》(GB 16297-1996)表 2 无组织排放限值限值要求。

④污水处理站无组织废气

本项目污水处理站污水处理过程中会产生恶臭,经有组织收集后还有少量恶臭以无组织逸散的方式排放,本项目采取对水处理池体、污泥浓缩池等加盖密闭的措施,加强有组织收集,污泥及时清运出厂,并在污水处理站周围加强绿化,减轻污水处理站无组织排放对周围环境的影响,采取以上措施后 NH₃、H₂S、臭气浓度排放满足《恶臭污染物排放标准》(GB14551-93)表1中标准要求。

综上所述,本项目的废气防治措施可行。

(2) 废水

项目锅炉系统排水及循环水系统排水用于厂区泼洒抑尘;项目屠宰废水、车辆冲洗废水、检疫检验废水及职工生活污水经厂内污水处理站处理后排至沙雅县污水处理厂处理,满足《肉类加工工业水污染物排放标准》(GB13457-92)表3三级标准、《屠宰及肉类加工工业水污染物排放标准》(二次征求意见稿)表3特别排放限值间接排放限值及沙雅县污水处理厂进水水质要求后,最终排入沙雅县污水处理厂进行深度处理。项目无废水直接排入地表水体,对地表水环境无影响。

综上所述,项目废水不直接外排水体,对周边地表水环境影响很小。

(3) 噪声

项目噪声污染源主要为电麻机、宰杀设备、分割设备、污水处理风机、各类 泵机等,声级值在 75dB(A)~100dB(A)。项目采取选用低噪声设备、基础减振、风机加装隔声罩、厂房隔声等措施后,厂界噪声贡献值符合《工业企业厂界 环境噪声排放标准》(GB12348-2008) 2 类标准要求。

综上,该项目采取的噪声污染治理措施可行。

(4) 固体废物

羊粪集中收集后外售作肥料加工;碎骨肉渣集中收集后定期外售作饲料加工;不合格羊及产品无害化处理后外售做肥料加工;污泥经浓缩脱水后外售堆肥用作农肥;生活垃圾由环卫部门统一收集处理。采取上述措施后,项目固体废物通过综合利用实现零排放,措施可行。

综上所述, 本项目污染防治措施可行。

9.6 环境影响经济损益分析

项目对废水、废气、噪声及固废等均采取了有效的治理及处置措施,从而使污染得到了有效的控制,不仅减少了污染物的排放,也减轻了对区域环境的影响,生态环境得到有效改善。预测结果表明,项目投产后污染物排放对环境影响较小。本工程污染防治措施具有较好的环境效益。该项目建成后,会促当地经济的发展,有利于社会的稳定和当地居民收入的提高,同时也给企业自身带来了一定利润。所以本项目的实施,具有很好的社会效益。

9.7 环境管理与监测计划

企业环境管理的基本任务是以保护环境为目标,清洁生产为手段,发展生产 与经济效益为目的,可以促进企业的生产管理、物资管理和技术管理,使资源、 能源得到充分利用,降低企业能耗、物耗,减少污染物排放总量,起到保护环境,

HA TO THE WAY TO SEE THE WAY THE WAY TO SEE THE WAY 改善企业与周围群众的关系,同时也使企业达到提高经济效益的目的。 **9.8 项目可行性结论**沙雅县金胡杨畜牧养殖左四一

空业政 四时也使企业达到提高经济效益的目的。
... 刊**行性结论**沙雅县金胡杨畜牧养殖有限责任公司沙雅县屠宰加工厂建设项目符合国家政策,建设内容符合清洁生产要求,各项污染防治措施可行,污染物部位放,厂区的建设不会对周围环境产生明显影响,在产生允益的同时,具有一定的环境效益。本³⁰⁰ A STATE OF THE STA